【题目】某校开展以“迎新年”为主题的艺术活动,举办了四个项目的比赛.它们分别是:A演讲、B唱歌、C书法、D绘画.要求每位同学必须参加且限报一项.以九(一)班为样本进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给出的信息解答下列问题:
![]()
(1)求出参加绘画比赛的学生人数占全班总人数的百分比;
(2)求出扇形统计图中参加书法比赛的学生所在的扇形圆心角的度数;
![]()
(3)若该校九年级学生共有500人,请你估计这次活动中参加演讲和唱歌的学生共有多少人?
参考答案:
【答案】(1)4%(2)72°(3)380
【解析】
解:(1) ∵参加唱歌的B项人数为25人 ,占全班人数的百分比为50%,
∴九年(一)班学生数为25÷50%=50(人) .
∴参加绘画的D项人数占全班总人数的百分比为2÷50=4%.
(2) 360°×(1-26%-50%-4%)=72°.
∴参加书法比赛的C项所在的扇形圆心角的度数是72°.
(3)根据题意:A项和B项学生的人数和占全班总人数的76%,
∴500×76﹪=380(人).
∴估计这次活动中参加演讲和唱歌的学生共有380人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
:
与函数
.(1)直线
经过定点
,直接写出点
的坐标:_______;(2)当
时,直线
与函数
的图象存在唯一的公共点,在图
中画出
的函数图象并直接写出
满足的条件;(3)如图
,在平面直角坐标系中存在正方形
,已知
、
.请认真思考函数
的图象的特征,解决下列问题:①当
时,请直接写出函数
的图象与正方形
的边的交点坐标:_______;②设正方形
在函数
的图象上方的部分的面积为
,求出
与
的函数关系式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:
中,
,求证:
,下面写出可运用反证法证明这个命题的四个步骤:①∴
,这与三角形内角和为
矛盾,②因此假设不成立.∴
,③假设在
中,
,④由
,得
,即
.这四个步骤正确的顺序应是( )A.③④②①B.③④①②C.①②③④D.④③①②
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A的坐标是(﹣1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.
情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.

情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:

你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】纪中三鑫双语学校准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).

根据以上统计图提供的信息,请解答下列问题:
(1)m= ,n= .
(2)补全上图中的条形统计图.
(3)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知等边△ABC的边长为
,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是( )A.
B.
C.
D. 
相关试题