【题目】已知x2+mx+9是完全平方式,则常数m等于 .
参考答案:
【答案】±6
【解析】解:x2+mx+9=x2+mx+32 ,
∵x2+mx+9是完全平方式,
∴mx=±2x3,
解得:m=±6,
所以答案是:±6.
【考点精析】认真审题,首先需要了解完全平方公式(首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x袖于点M , 交y轴于点N , 再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P . 若点P的坐标为(2a , b+1),则a与b的数量关系为( )

A.a-b
B.2a+b=-1
C.2a-b=l
D.2a+b=l -
科目: 来源: 题型:
查看答案和解析>>【题目】利用计算器求值(精确到0.0001):tan27°15′+cos63°42′=
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算或化简
(1)﹣22+(﹣
)﹣2﹣(π﹣5)0﹣|﹣3|
(2)(﹣3a)3+(﹣2a4)2÷(﹣a)5
(3)(a+3b﹣2c)(a﹣3b﹣2c)
(4)y(x+y)+(x﹣y)2﹣(x+y)(﹣y+x),其中x=﹣
、y=3. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。

(1)求证:CD是⊙M的切线;
(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标;
(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使
?若存在,求出点Q的坐标;若不存在,请说明理由。 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,∠ACB=90°,D是AB的中点,∠EDF=90°
(1)如图1,若E、F分别在AC、BC边上,猜想AE2、BF2和EF2之间有何等量关系,并证明你的猜想;
(2)若E、F分别在CA、BC的延长线上,请在图2中画出相应的图形,并判断(1)中的结论是否仍然成立(不作证明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.
(3)求弹珠离开轨道时的速度.
相关试题