【题目】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.求证:(1)△ADE≌△BEC (2)△CDE 是直角三角形 .
![]()
参考答案:
【答案】(1)证明见解析; (2)证明见解析.
【解析】
(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;
(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.
(1)∵∠1=∠2,
∴DE=CE,
∵∠A=∠B=90°,
在Rt△ADE和Rt△BEC中,
![]()
∴Rt△ADE≌Rt△BEC(HL);
![]()
(2)∵Rt△ADE≌Rt△BEC,
∴∠3=∠4,
∵∠3+∠5=90°,
∴∠4+∠5=90°,
∴∠DEC=90°,
∴△CDE是直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目
里程费
时长费
远途费
单价
1.8元/千米
0.3元/分
0.8元/千米
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千米收0.8元.
(1)小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点,他们的实际行车里程分别为6千米与8.5千米,两人付给滴滴快车的乘车费相同(1)求这两辆滴滴快车的实际行车时间相差多少分钟;
(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数的图象经过点A(2,0),B(0,4).
(1)求此函数的解析式;
(2)若点P为此一次函数图象上一动点,且△POA的面积为2,求点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.
(1)每只A型球、B型球的质量分别是多少千克?
(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是多少?
(2)汽车在中途停了多长时间?
(3)当16≤t≤30时,求S与t的函数关系式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD 中,E,F分别是AB,BC边上的点,AF与DE相交于点G,且AF=DE.
求证:(1)BF=AE;
(2)AF⊥DE.

相关试题