【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣
x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为
m. ![]()
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
参考答案:
【答案】
(1)解:根据题意得B(0,4),C(3,
),
把B(0,4),C(3,
)代入y=﹣
x2+bx+c得
,
解得
.
所以抛物线解析式为y=﹣
x2+2x+4,
则y=﹣
(x﹣6)2+10,
所以D(6,10),
所以拱顶D到地面OA的距离为10m
(2)解:由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),
当x=2或x=10时,y=
>6,
所以这辆货车能安全通过
(3)解:令y=8,则﹣
(x﹣6)2+10=8,解得x1=6+2
,x2=6﹣2
,
则x1﹣x2=4
,
所以两排灯的水平距离最小是4
m
【解析】(1)先确定B点和C点坐标,然后利用待定系数法求出抛物线解析式,再利用配方法确定顶点D的坐标,从而得到点D到地面OA的距离;(2)由于抛物线的对称轴为直线x=6,而隧道内设双向行车道,车宽为4m,则货运汽车最外侧与地面OA的交点为(2,0)或(10,0),然后计算自变量为2或10的函数值,再把函数值与6进行大小比较即可判断;(3)抛物线开口向下,函数值越大,对称点之间的距离越小,于是计算函数值为8所对应的自变量的值即可得到两排灯的水平距离最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列四组条件中,不能判定四边形ABCD是平行四边形的是

A.
,
B.
,
C.
,
D.
,
-
科目: 来源: 题型:
查看答案和解析>>【题目】你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.
(1)分别化简下列各式:
(x﹣1)(x+1)= ;
(x﹣1)(x2+x+1)= ;
(x﹣1)(x3+x2+x+1)= ;
…
(x﹣1)(x99+x98+…+x+1)= .
(2)请你利用上面的结论计算:
299+298+…+2+1
399+398+…+3+1
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 ;(请选择正确的一个)
A、a2﹣2ab+b2=(a﹣b)2 B、a2﹣b2=(a+b)(a﹣b) C、a2+ab=a(a+b)
(2)应用你从(1)选出的等式,完成下题:
计算:(1﹣
)(1﹣
)(1﹣
)…(1﹣
)(1﹣
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:
(1)(x+1)2+x(x-2),其中x=-
;(2)[(xy+2)(xy-2)-2(x2y2-2)]÷xy,其中x=10,y=-
;(3)已知a+b=12,ab=20,求a(a+b)(a-b)-a(a+b)2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是( )

A.110°
B.80°
C.40°
D.30°
相关试题