【题目】如图,如图为边长为a的大正方形中有一个边长为b的小正方形,如图是由如图中阴影部分拼成的一个长方形.
![]()
(1)设如图中阴影部分面积为S1,如图中阴影部分面积为S2,请用含a、b的代数式表示:
____ __,
___ ___(只需表示,不必化简);
(2)以上结果可以验证哪个乘法公式?
请写出这个乘法公式__ ____;
(3)利用(2)中得到的公式,
计算:
.
参考答案:
【答案】(1)
,
;(2)
;(3)1.
【解析】
(1)求出大正方形及小正方形的面积,作差即可得出阴影部分的面积;图2所示的长方形的长和宽分别为(a+b)、(a-b),由此可计算出面积;
(2)根据阴影部分的面积相等可得出平方差公式;
(3)利用平方差公式计算即可.
(1)大正方形的面积为a2,小正方形的面积为b2,
故图1阴影部分的面积值为a2-b2;
长方形的长和宽分别为(a+b)、(a-b),
故图2重拼的长方形的面积为(a+b)(a-b);
(2)比较上面的结果,都表示同一阴影的面积,它们相等,
即(a+b)(a-b)=a2-b2,可以验证平方差公式,这也是平方差公式的几何意义;
故答案为:(a+b)(a-b)=a2-b2;
(3)20172-2018×2016
=20172-(2017+1)(2017-1)
=20172-(20172-1)
=20172-20172+1
=1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的文字,解答问题.
大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能完全地写出来,于是小明用
﹣1来表示
的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为
的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:
(1)求出
+2的整数部分和小数部分;(2)已知:10+
=x+y,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,用四个完全一样的长、宽分别为x、y的长方形纸片围成一个大正方形ABCD,中间是空的小正方形EFGH.若AB=a,EF=b,判断以下关系式:① x + y=a;② x-y=b;③ a2-b2=2xy;④ x2-y2=ab;⑤ x2 + y2=
,其中正确的有__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测点O处测得该船位于北偏东60°的方向,则该船航行的距离为( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的一块地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求这块地的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(背景介绍)勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.

(小试牛刀)把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,∠DAB=∠B=90°,AC⊥DE.请用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:
S梯形ABCD= ,
S△EBC= ,
S四边形AECD= ,
则它们满足的关系式为 ,经化简,可得到勾股定理.
(知识运用)(1)如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC=16千米,则两个村庄的距离为 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.
(知识迁移)借助上面的思考过程与几何模型,求代数式
最小值(0<x<16)
相关试题