【题目】如图,已知抛物线y=
x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.![]()
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
参考答案:
【答案】
(1)
解:∵点A(0,1).B(﹣9,10)在抛物线上,
∴
,
∴
,
∴抛物线的解析式为y=
x2+2x+1
(2)
解:∵AC∥x轴,A(0,1)
∴
x2+2x+1=1,
∴x1=﹣6,x2=0,
∴点C的坐标(﹣6,1),
∵点A(0,1).B(﹣9,10),
∴直线AB的解析式为y=﹣x+1,
设点P(m,
m2+2m+1)
∴E(m,﹣m+1)
∴PE=﹣m+1﹣(
m2+2m+1)=﹣
m2﹣3m,
∵AC⊥EP,AC=6,
∴S四边形AECP
=S△AEC+S△APC
=
AC×EF+
AC×PF
=
AC×(EF+PF)
=
AC×PE
=
×6×(﹣
m2﹣3m)
=﹣m2﹣9m
=﹣(m+
)2+
,
∵﹣6<m<0
∴当m=﹣
时,四边形AECP的面积的最大值是
,
此时点P(﹣
,﹣
)
(3)
解:∵y=
x2+2x+1=
(x+3)2﹣2,
∴P(﹣3,﹣2),
∴PF=yF﹣yP=3,CF=xF﹣xC=3,
∴PF=CF,
∴∠PCF=45°
同理可得:∠EAF=45°,
∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的Q,
设Q(t,1)且AB=9
,AC=6,CP=3 ![]()
∵以C、P、Q为顶点的三角形与△ABC相似,
① 当△CPQ∽△ABC时,
∴
,
∴
,
∴t=﹣4,
∴Q(﹣4,1)
②当△CQP∽△ABC时,
∴
,
∴
,
∴t=3,
∴Q(3,1)
【解析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,
m2+2m+1),表示出PE=﹣
m2﹣3m,再用S四边形AECP=S△AEC+S△APC=
AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.

(1)已知BD=
,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(-4,1),B(-3,3),C(-1,2).

(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.
(2)在x轴上画出点P,使PA+PC最小.(不写作法,保留作图痕迹)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.
(1)求此时货轮到小岛B的距离.
(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)
(参考数据:sin48°≈
,tan48°≈
,sin64°≈
,tan64°≈2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号
分组
频数
一
6≤m<7
2
二
7≤m<8
7
三
8≤m<9
a
四
9≤m≤10
2

(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2 , 在第四组内的两名选手记为:B1、B2 , 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.

(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB=
,BC=2,求⊙O的半径.
相关试题