【题目】如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2016的坐标是______.
![]()
参考答案:
【答案】(1009,1008
)
【解析】
根据题意得出直线OB1的解析式为y=
x,进而得出O,B1,B2,B3坐标,进而得出坐标变化规律,进而得出答案.
过B1向x轴作垂线B1C,垂足为C,
由题意可得:A(1,0),AO∥A1B1,∠B1OC=30°,
∴CB1=OB1cos30°=
,
∴B1的横坐标为:
,则B1的纵坐标为:
,
∴点B1,B2,B3,…都在直线y=
x上,
∴B1(
,
),
同理可得出:A的横坐标为:1,
∴y=
,
∴A2(2,
),
…
An(1+
,
).
∴A2016(1009,1008
),
故答案为:(1009,1008
)
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄
清理养鱼网箱人数/人
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知反比例函数y1=
的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2) .(1)求这两个函数的关系式;
(2)观察图象,直接写出使得y1>y2成立的自变量x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】【题目】某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为20℃的条件下生长最快的新品种.图示是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是反比例函数y=一的图象上一部分,请根据图中信息解答下列问题
(1)恒温系统在这天保持大棚内温度20℃的时间有多少小时?
(2)求k的值;

(3)当x=20时,大棚内的温度约为多少度?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=
(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.
(1)分别求yA、yB关于x的函数关系式;
(2)当A组材料的温度降至120℃时,B组材料的温度是多少?
(3)在0<x<40的什么时刻,两组材料温差最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列方程的特征及其解的特点.
①x+
=-3的解为x1=-1,x2=-2;②x+
=-5的解为x1=-2,x2=-3;③x+
=-7的解为x1=-3,x2=-4.解答下列问题:
(1)请你写出一个符合上述特征的方程为________,其解为________;
(2)根据这类方程的特征,写出第n个方程为________,其解为________;
(3)请利用(2)的结论,求关于x的方程x+
=-2(n+2)(其中n为正整数)的解. -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店准备购进
两种商品,
种商品毎件的进价比
种商品每件的进价多20元,用3000元购进
种商品和用1800元购进
种商品的数量相同.商店将
种商品每件的售价定为80元,
种商品每件的售价定为45元.(1)
种商品每件的进价和
种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进
两种商品共40件,其中
种商品的数量不低于
种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件
种商品售价优惠
(
)元,
种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.
相关试题