【题目】阅读下列材料,解答问题:
定义:线段AD把等腰三角形ABC分成△ABD与△ACD(如图1),如果△ABD与△ACD均为等腰三角形,那么线段AD叫做△ABC的完美分割线.![]()
(1)如图1,已知△ABC中,AB=AC,∠BAC=108°,AD为△ABC的完美分割线,且BD<CD,则∠B= , ∠ADC=.
(2)如图2,已知△ABC中,AB=AC,∠A=36°,BE为△ABC的角平分线,求证:BE为△ABC完美分割线.
(3)如图3,已知△ABC是一等腰三角形纸片,AB=AC,AD是它的一条完美分割线,将△ABD沿直线AD折叠后,点B落在点B1处,AB1交CD于点E,求证:DB1=EC.
参考答案:
【答案】
(1)36o;72o
(2)
证明:∵AB=AC
∴∠ABC=∠C= ![]()
∵BE为△ABC的角平分线
∴ ![]()
∴∠ABE=∠A
∴AE=BE∵∠BEC=180–∠C–∠CBE=72
∴∠BEC=∠C
∴BE=BC
∴△ABE、△BEC均为等腰三角形
∴BE为△ABC的完美分割线.
(3)
证明:∵AD是△ABC的一条完美分割线
∴AD=BD,AC=CD
∴∠B=∠BAD,∠CAD=∠CDA
∵∠B+∠BAD+∠ADB=180,∠ADB+∠CDA=180
∴∠CDA=∠B+∠BAD=2∠BAD
∴∠CAD=2∠BAD
∵∠BAD=∠B1AD
∴∠CAD=2∠B1AD
∵∠CAD=∠B1AD+∠CAE
∴∠B1AD=∠CAE
∵AB=AC
∴∠B=∠C
∵∠B=∠B1
∴∠B1=∠C
∵AB=AB1
∴AB1= AC
∴△AB1D≌△ACE
∴DB1=CE
【解析】解:(1)∵AB=AC,∠BAC=108°,∴∠B=
=36°,∵AD为△ABC的完美分割线,BD<CD,∴AC=AD,BD=AD,∴∠ADC=
72°.
所以答案是72°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分9分)已知点D是
边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;
(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;
(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)

-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:ma2﹣4ma+4m= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个横截面为Rt△ABC的物体,∠ACB=90°,∠CAB=30°,BC=1m,工人师傅要把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1BC1的位置(BC1在l上),最后沿射线BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).
(1)请直接写出AB= ,AC= ;
(2)画出在搬动此物体的整个过程中A点所经过的路径,并求出该路径的长度.
(3)设O、H分别为边AB、AC的中点,在将△ABC绕点B顺时针方向翻转到△A1BC1的位置这一过程中,求线段OH所扫过部分的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分9分)如图,在
中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;
(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个圆柱体的侧面展开图为长方形ABCD,若AB=6.28cm,BC=18.84cm,则该圆柱体的体积是多少?(π取3.14,结果精确到十分位).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校积极响应上级的号召,举行了“决不让一个学生因贫困而失学”的捐资助学活动,其中6个班同学的捐款平均数如下表:
班级
一班
二班
三班
四班
五班
六班
捐款平均数(元)
6
4.6
4.1
3.8
4.8
5.2
则这组数据的中位数是多少元?
相关试题