【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,
在同一条直线上,连结
.
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)证明:
.
![]()
参考答案:
【答案】(1)△BAE≌△CAD,理由见解析;(2)证明见解析.
【解析】试题分析:①可以找出△BAE≌△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.
②由①可得出∠DCA=∠ABC=45°,则∠BCD=90°,所以DC⊥BE.
试题解析:①∵△ABC,△DAE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°.
∠BAE=∠DAC=90°+∠CAE,
在△BAE和△DAC中
![]()
∴△BAE≌△CAD(SAS).
②由①得△BAE≌△CAD.
∴∠DCA=∠B=45°.
∵∠BCA=45°,
∴∠BCD=∠BCA+∠DCA=90°,
∴DC⊥BE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果(2a+2b+1)(2a+2b﹣1)=3,那么 a+b 的值为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而减少,则x的取值范围是( )
A.x<1B.x>1C.x<﹣1D.x>﹣1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:
(1)∠PBC=∠CBD;
(2)
=ABBD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。
求证:(1)AD=AG,(2)AD与AG的位置关系如何。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作ABCD关于直线AD的对称图形AB1C1D.
(1)若m=3,试求四边形CC1B1B面积S的最大值;
(2)若点B1恰好落在y轴上,试求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:
≈1.73)
相关试题