【题目】如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=
x上一点,则点B与其对应点B′间的距离为 . ![]()
参考答案:
【答案】5
【解析】解:如图,连接AA′、BB′.
∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是4.
又∵点A的对应点在直线y=
x上一点,
∴4=
x,解得x=5.
∴点A′的坐标是(5,4),
∴AA′=5.
∴根据平移的性质知BB′=AA′=5.
故答案为:5.![]()
根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线y=x2+mx+n﹣1的对称轴为x=2.

(1)m的值为;
(2)若抛物线与y轴正半轴交于点A,其对称轴与x轴交于点B,当△OAB是等腰直角三角形时,求n的值;
(3)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个交点,求n的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,∠BAD=α,E为对角线AC上的一点(不与A,C重合),将射线EB绕点E顺时针旋转β角之后,所得射线与直线AD交于F点.试探究线段EB与EF的数量关系.小宇发现点E的位置,α和β的大小都不确定,于是他从特殊情况开始进行探究.

(1)如图1,当α=β=90°时,菱形ABCD是正方形.小宇发现,在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分线的性质可知EM=EN,进而可得△EMF≌△ENB,并由全等三角形的性质得到EB与EF的数量关系为 .
(2)如图2,当α=60°,β=120°时,
①依题意补全图形;
②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立,
请举出反例说明;
(3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE=γ,若旋转后所得的线段EF与EB的数量关系满足(1)中的结论,请直接写出角α,β,γ满足的关系: -
科目: 来源: 题型:
查看答案和解析>>【题目】点P到∠AOB的距离定义如下:点Q为∠AOB的两边上的动点,当PQ最小时,我们称此时PQ的长度为点P到∠AOB的距离,记为d(P,∠AOB).特别的,当点P在∠AOB的边上时,d(P,∠AOB)=0.在平面直角坐标系xOy中,A(4,0).

(1)如图1,若M(0,2),N(﹣1,0),则d(M,∠AOB)= , d(N,∠AOB)=;
(2)在正方形OABC中,点B(4,4).如图2,若点P在直线y=3x+4上,且d(P,∠AOB)=2
,求点P的坐标;
(3)如图3,若点P在抛物线y=x2﹣4上,满足d(P,∠AOB)=2
的点P有个,请你画出示意图,并标出点P. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC、AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的盒子里装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于10的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:

根据上述信息,解答下列问题:
(1)抽取的学生人数为;
(2)将两幅统计图补充完整;
(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.
相关试题