【题目】如图,已知:正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积为16,AE=1,则正方形EFGH的面积为 .
![]()
参考答案:
【答案】10
【解析】
试题分析:根据正方形的性质找出相等的边角关系,从而证出△AFE≌△BGF≌△CHG≌△DEH,再由正方形ABCD的面积为16,AE=1,找出AF的长度,根据S正方形EFGH=S正方形ABCD﹣4S△AFE即可得出结论.
解:∵四边形ABCD、EFGH均为正方形,
∴∠A=∠B=90°,∠EFG=90°,EF=FG.
∵∠AFE+∠BFG=90°,∠BFG+∠BGF=90°,
∴∠AFE=∠BGF.
在△AFE和△BGF中,
,
∴△AFE≌△BGF(AAS),
∴BF=AE=1.
∵正方形ABCD的面积为16,
∴AB=4,AF=AB﹣BF=3.
同理可证出△AFE≌△BGF≌△CHG≌△DEH.
∴S正方形EFGH=S正方形ABCD﹣4S△AFE=16﹣4×
×1×3=10.
故答案为:10.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一个点从A(a1,a2)出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此一直运动下去,则a2015+a2016的值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角墙角AOB(OA⊥OB,且OA,OB长度不限)中.要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2 .

(1)求这地面矩形的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少? -
科目: 来源: 题型:
查看答案和解析>>【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形。.

(1)概念理解
如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是等邻边四边形。请写出你添加的一个条件;
(2)问题探究
小明猜想:对角线互相平分的等邻边四边形是菱形.她的猜想正确吗?请说明理由.
如图2,小明面了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,井将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′.小明要是平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB′的长)? -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解题:
如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.

(1)可求得x= .
(2)第2017个格子中的数为 ;
(3)前n个格子中所填整数之和是否可能为2020?若能,求出n的值,若不能,请说明理由;
-
科目: 来源: 题型:
查看答案和解析>>【题目】第一中学九年级有340名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是( )
A.至少有两人生日相同B.不可能有两人生日相同
C.可能有两人生日相同,且可能性较大D.可能有两人生日相同,但可能性较小
-
科目: 来源: 题型:
查看答案和解析>>【题目】将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为( )

A.2cm2
B.4cm2
C.6cm2
D.8cm2
相关试题