【题目】如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________。
![]()
参考答案:
【答案】![]()
【解析】
可将△OBC绕着O点顺时针旋转90°,所得的图形与△OAC正好拼成等腰直角三角形BC+AC等于等腰三角形的斜边CD.
解:![]()
将△OBC绕O点旋转90°,
∵OB=OA
∴点B落在A处,点C落在D处
且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,
在四边形OACB中
∵∠BOA=∠BCA=90°,
∴∠OBC+∠OAC=180°,
∴∠OAD+∠OAC=180°
∴C、A、D三点在同一条直线上,
∴△OCD为等要直角三角形,根据勾股定理
CD2=OC2+OD2
即CD2=32+32=18
解得CD=
即BC+AC=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.
(1)当圆P过点A时,求圆P的半径;
(2)分别联结EH和EA,当△ABE∽△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;
(3)将劣弧
沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值. 


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论

①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】将正整数1至2019按照一定规律排成下表:

记aij表示第i行第j个数,如a14=4表示第1行第4个数是4.
(1)直接写出a35= ,a54= ;
(2)①若aij=2019,那么i= ,j= ,②用i,j表示aij= ;
(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=
的图象分别交于C、D两点,点D的坐标为(2,-3),点B是线段AD的中点.则不等式 k1x+b —
>0的解集是___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:

(1)上表中的a= ;
(2)“摸到白球”的概率的估计值是 (精确到0.1)
(3)试估算口袋中黑、白两种颜色的球各有多少个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程
(m为常数)(1)求证:不论m为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m的值及方程的另一个根。
相关试题