【题目】已知:如图,在ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
![]()
(1)求证:△DOE≌△BOF;
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
参考答案:
【答案】(1)证明见解析(2)∠DOE=90°,理由见解析
【解析】
试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);
(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.
(1)证明:∵在ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
,
∴△DOE≌△BOF(ASA);
(2)解:当∠DOE=90°时,四边形BFDE为菱形,
理由:∵△DOE≌△BOF,
∴OE=OF,
又∵OB=OD
∴四边形EBFD是平行四边形,
∵∠EOD=90°,
∴EF⊥BD,
∴四边形BFDE为菱形.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】过m边形的顶点能作7条对角线,n边形没有对角线,k边形有k条对角线,则(m﹣k)n= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】若am=6,an=3,则am+2n的值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】按图填空, 并注明理由
已知: 如图, ∠1=∠2, ∠3=∠E. 求证: AD∥BE

证明: ∵∠1 = ∠2 (已知)
∴ ∥ ( )
∴ ∠E = ∠ ( )
又∵ ∠E = ∠3 ( 已知 )
∴ ∠3 = ∠ ( 等量代换 )
∴ ∥ ( 内错角相等,两直线平行 )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD周长为8,∠BAD=120°,P为BD上一动点,E为CD中点,则PE+PC的最小值长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A1B1C,连结AA1,若∠AA1B1=15°,则∠B的度数是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】居民区内的“广场舞”引起媒体关注,某都市频道媒体为此进行过专访报道,小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:

(1)求本次被抽查的居民有多少人?
(2)将图1和图2补充完整;
(3)求图2中“C”层次所在扇形的圆心角的度数;
(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.
相关试题