【题目】推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,求证∠B+∠F=180°.
证明:∵∠B= (已知),
∴AB∥C( ),
∵∠DGF= (已知),
∴CD∥EF( ),
∴AB∥ ( )
∴∠B+ =180°( ).
参考答案:
【答案】∠CGF;同位角相等,两直线平行;∠F;内错角相等,两直线平行;EF;平行于同一条直线的两条直线平行;∠F;两直线平行,同旁内角互补
【解析】试题分析:根据平行线的判定定理得出AB∥CD,CD∥EF,从而得出AB∥EF,由平行线的性质得出
试题解析:证明::∵∠B=∠CGF(已知)
∴AB∥CD(同位角相等两直线平行)
∵∠DGF=∠F(已知)
∴CD∥EF,
∴AB∥EF(平行于同一直线的两直线平行)
∴
(两直线平行同旁内角互补),
故答案为: ∠CGF,同位角相等两直线平行,∠F,内错角相等,两直线平行,EF,平行于同一条直线的两条直线平行,∠F,两直线平行同旁内角互补.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】探究证明:
(1)如图1,在△ABC中,AB=AC,点E是BC上的一个动点,EG⊥AB,EF⊥AC,CD⊥AB,点G,F,D分别是垂足.求证:CD=EG+EF;
猜想探究:
(2)如图2,在△ABC中,AB=AC,点E是BC的延长线上的一个动点,EG⊥AB于G,EF⊥AC交AC延长线于F,CD⊥AB于D,直接猜想CD、EG、EF之间的关系为 CD=EG﹣EF ;
问题解决:
(3)如图3,边长为10的正方形ABCD的对角线相交于点O、H在BD上,且BH=BC,连接CH,点E是CH上一点,EF⊥BD于点F,EG⊥BC于点G,则EF+EG= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是___________:

①OB∥AC ②∠EOC=45°
③∠OCB:∠OFB=1:3 ④若∠OEB=∠OCA,则∠OCA=60°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD,四边形BEFG均为正方形,连接AG,CE.试说明:
(1)AG=CE;
(2)AG⊥CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程组:
(1)
(2)
(3)
(4)
-
科目: 来源: 题型:
查看答案和解析>>【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次
第二次
第三次
第四次
第五次
第六次
平均成绩
中位数
甲
10
8
9
8
10
9
9
①
乙
10
7
10
10
9
8
②
9.5
(1)完成表中填空① ;② ;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为
,你认为推荐谁参加比赛更合适,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解题:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.
例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;
(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;
根据以上信息,完成下列问题:
(1)填空:i3= ,i4= ;
(2)计算:(1+i)×(3-4i);
(3)计算:i+i2+i3+…+i2018.
相关试题