【题目】在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)
(1)写出y与x之间的函数解析式;
(2)画出此函数的图象.
![]()
参考答案:
【答案】见解析.
【解析】试题分析:(1)分以下三种情况:点P在AB上运动、点P在BC上运动、点P在CD上运动,分别根据三角形的面积公式可得;
(2)根据(1)中函数关系式即可得.
试题解析:点P在边AB,BC,CD上运动时所对应的y与x之间的函数表达式不相同,故应分段求出相应的函数表达式.
①当点P在边AB上运动,即0≤x<3时,
y=
×4x=2x;
②当点P在边BC上运动,即3≤x<7时,
y=
×4×3=6;
③当点P在边CD上运动,即7≤x≤10时,
y=
×4(10-x)=-2x+20.
所以y与x之间的函数表达式为:y=![]()
(2)函数图象如图所示.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】请阅读下列材料,并完成相应的任务。
阿基米德(Archimedes,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.
阿基米德折弦定理:如图1,AB和BC是圆O的两条弦(即折线ABC是圆的一条折弦), BC>AB,M是
的中点,即CD=AB+BD。下面是运用“截长法”证明CD=AB+BD的部分过程。
证明:如图2,在CB上截取CG=AB,连接MA、MB、MC、MG。因为M是弧ABC的中点,所以MA=MC.
任务:
(1)请按照上面的证明思路,完整证明阿基米德折弦定理,即CD=AB+BD。
(2)如图3,已知等边△ABC内接于圆O,AB=1,D为
上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知动点P以每秒2㎝的速度沿图甲的边框按从
的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙.若AB=6,试回答下列问题:
(1)图甲中的BC长是多少?
(2)图乙中的a是多少?
(3)图甲中的图形面积的多少?
(4)图乙的b是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:

(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.

(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.
求证:AE是△ABC的一条特异线.
(2)如图2,已知BD是△ABC的一条特异线,其中∠A=
,∠ABC为钝角,求出所有可能的∠ABC的度数.
(3)如图3,△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角
度数为整数,请求出其特异线的长度;若它的顶角度数不是整数,请直接写出顶角度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y=kx+b经过A(0,2),B(4,0)两点.
(1)求直线AB对应的函数解析式;
(2)将该直线向上平移6个单位,求平移后的直线与x轴交点的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线a1、a2、a3分别与直线b1、b2相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.

相关试题