【题目】如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥DA于Q.
(1)求∠BPQ的度数;
(2)若PQ=3,EP=1,求AD的长.
![]()
参考答案:
【答案】(1)60°;(2)7.
【解析】
(1)根据SAS证明△ABE≌△CAD,然后根据全等三角形的性质得出∠ABE=∠CAD,进而解答即可;
(2)根据含30°的直角三角形的性质解答即可.
解:(1)∵△ABC为等边三角形,
∴AB=AC,∠BAC=∠C=60°,
在△ABE与△CAD中,
,
∴△ABE≌△CAD(SAS)
∴∠ABE=∠CAD,AD=BE,
∴∠BPQ=∠BAD+∠ABE=∠BAD+∠CAD=60°;
(2)∵BQ⊥AD,∠BPQ=60°,
∴∠PBQ=30°,
∴BP=2PQ=6,
又∵AD=BE,
∴BE=BP+PE=6+1=7.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.

(1)求该抛物线所对应的函数解析式;
(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;
(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.
①若∠APE=∠CPE,求证:
;
②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)

(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;
(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.
(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒
cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.
(1)若BM=BN,求t的值;
(2)若△MBN与△ABC相似,求t的值;
(3)当t为何值时,四边形ACNM的面积最小?并求出最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,4)两点,动点P从A出发,在线段AB上沿A→B的方向以每秒2个单位长度的速度运动,过点P作PD⊥y于点D,交抛物线于点C.设运动时间为t(秒).

(1)求二次函数y=﹣x2+bx+c的表达式;
(2)连接BC,当t=
时,求△BCP的面积;
(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以1个单位长度的速度运动.当点P与B重合时,P、Q两点同时停止运动,连接DQ,PQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系及t的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点(
,﹣
),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.
(1)求该二次函数的解析式,及顶点D的坐标;
(2)求|PC﹣PD|的最大值及对应的点P的坐标;
(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.

(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.
(2)当BP=2
时,试说明射线CA与⊙P是否相切.
(3)连接PA,若S△APE=
S△ABC , 求BP的长.
相关试题