【题目】如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为____________.
![]()
参考答案:
【答案】5
【解析】
过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知△CDF≌△EDG,从而有CF=EG,由△ADE的面积可求EG,得出CF的长,由矩形的性质得BF=AD,根据BC=BF+CF求解.
解:过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,
![]()
由旋转的性质可知CD=ED,
∵∠EDG+∠CDG=∠CDG+∠FDC=90°,
∴∠EDG=∠FDC,又∠DFC=∠G=90°,
∴△CDF≌△EDG,∴CF=EG,
∵S△ADE=
AD×EG=3,AD=2,
∴EG=3,则CF=EG=3,
依题意得四边形ABFD为矩形,∴BF=AD=2,
∴BC=BF+CF=2+3=5.
故答案为:5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=0.5,OB=4,OE=2.

(1)求直线AB和反比例函数的解析式;
(2)求△OCD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,对于点
,若点Q的坐标为
,其中a为常数,则称点Q是点P的“a级关联点”
例如,点
的“3级关联点”为
,即
.
已知点
的“
级关联点”是点
,点B的“2级关联点”是
,求点
和点B的坐标;
已知点
的“
级关联点”
位于y轴上,求
的坐标;
已知点
,
,点
和它的“n级关联点”
都位于线段CD上,请直接写出n的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正确的结论是( )

A. ①③④ B. ②③④ C. ①②③ D. ①②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB . -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=
,其中
为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.
【1】求证:△ABE≌△CDA;
【2】若∠DAC=40°,求∠EAC的度数.

相关试题