【题目】把下列的推理过程补充完整,并在括号里填上推理的依据:
如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.
试说明:DF∥AB
解:因为BE是∠ABC的角平分线
所以(角平分线的定义)
又因为∠E=∠1(已知)
所以∠E=∠2()
所以()
所以∠A+∠ABC=180°()
又因为∠3+∠ABC=180°(已知)
所以(同角的补角相等)
所以DF∥AB()![]()
参考答案:
【答案】∠1=∠2;等量代换;AE∥BC;内错角相等,两直线平行;两直线平行,同旁内角互补;∠3=∠A;同位角相等,两直线平行
【解析】解:因为BE是∠ABC的角平分线,
所以∠1=∠2(角平分线的定义),
又因为∠E=∠1(已知)
所以∠E=∠2(等量代换)
所以AE∥BC(内错角相等,两直线平行)
所以∠A+∠ABC=180°(两直线平行,同旁内角互补)
又因为∠3+∠ABC=180°(已知)
所以∠3=∠A(同角的补角相等)
所以DF∥AB(同位角相等,两直线平行).
故答案为:∠1=∠2;等量代换;AE∥BC;内错角相等,两直线平行;两直线平行,同旁内角互补;∠3=∠A;同位角相等,两直线平行.
根据题意、结合图形,根据平行线的判定定理和性质定理解答即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若代数式x2+2x的值是4,则4x2+8x-9的值是
-
科目: 来源: 题型:
查看答案和解析>>【题目】不改变代数式a2-(a-b+c)的值,把它括号前面的符号变为相反的符号,应为
-
科目: 来源: 题型:
查看答案和解析>>【题目】手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.
(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?
①丙抢到金额为1元的红包;
②乙抢到金额为4元的红包
③甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;
(2)记金额最多、居中、最少的红包分别为A,B,C.
①求出甲抢到红包A的概率;
②若甲没抢到红包A,则乙能抢到红包A的概率又是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系内,与点P(﹣3,2)关于原点对称的点的坐标是( )
A.(3,﹣2)
B.(2,3)
C.(2,﹣3)
D.(﹣3,﹣2) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,点D是AB边上的一点,DE⊥AB于D,交AC于M,且ED=AC,过点E作EF∥BC分别交AB、AC于点F、N.

(1)试说明:△ABC≌△EFD;
(2)若∠A=25°,求∠EMN的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在Rt△ABC中,∠B=90°,∠C=30°.
(1)求证:AB=
AC;并请你用文字叙述直角三角形的这条性质,把它写在下列横线上:;
(2)利用(1)题所得结论继续解答下列问题:
如图2,在Rt△ABC中,∠B=90°,BC=
,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连结DE、EF.①求证:四边形AEFD是平行四边形;
②当t为何值时,△DEF为直角三角形?请说明理由.

相关试题