【题目】如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′= . ![]()
参考答案:
【答案】40°
【解析】解:∵矩形ABCD,∠DAC=65°, ∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,
∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,
∴四边形BCEC′是正方形,
∴∠BEC=45°,
由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,
由翻折的性质得,∠BFC′=∠BFC=70°,
∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.
所以答案是:40°.
【考点精析】认真审题,首先需要了解矩形的性质(矩形的四个角都是直角,矩形的对角线相等),还要掌握翻折变换(折叠问题)(折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2017天水)下列说法正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4
,则S阴影=( ) 
A.2π
B.
π
C.
π
D.
π -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以
cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是 . (只填写序号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题
(1)计算:﹣14+
sin60°+(
)﹣2﹣(π﹣
)0
(2)先化简,再求值:(1﹣
)÷
,其中x=
﹣1.
相关试题