【题目】已知一次函数y=(m-3)x+m-8,y随x的增大而增大,
(1)求m的取值范围;
(2)如果这个一次函数又是正比例函数,求m的值;
(3)如果这个一次函数的图象经过一、三、四象限,试写一个m的值,不用写理由.
参考答案:
【答案】(1) m>3;(2)8;(3) 3<m<8中任取一个值都可以.
【解析】试题分析:(1)根据函数的增减性得到m-3>0,从而确定m的取值范围;
(2)根据正比例函数的定义得到m-3≠0且m-8=0,从而确定m的值;
(3)根据一次函数的性质确定m的取值范围,然后从m的范围内确定m的一个值即可.
试题解析:(1)根据题意得m-3>0,
解得m>3;
(2)根号题意得m-3≠0且m-8=0,
解得m=8;
(3)根据题意得:
,
解得:3<m<8,
∴3<m<8中任取一个值都可以.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校一栋5层的教学大楼,第一层没有教室,二至五层,每层楼有6间教室,进出这栋大楼共有两道大小相同的大门和一道小门(平时小门不开).安全检查中,对这3道门进行了测试:当同时开启一道大门和一道小门时,3分钟内可以通过540名学生,若一道大门平均每分钟比一道小门可多通过60名学生.
(1)求平均每分钟一道大门和一道小门各可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5分钟内安全撤离.这栋教学大楼每间教室平均有45名学生,问:在紧急情况下只开启两道大门是否可行?为什么?3道门都开启呢?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一动点P从数轴上的原点出发,按下列规则运动:
(1)沿数轴的正方向先前进5个单位,然后后退3个单位,如此反复进行;
(2)已知点P每秒只能前进或后退1个单位.设Xn表示第n秒点P在数轴上的位置所对应的数,则X2018为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为
;④
,其中所有正确结论的序号是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】点P(2018,2019)在第( )象限.
A.一B.二C.三D.四
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是( )
A. ﹣10B. 10C. ﹣6D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程
(1)5x-1=x+1
(2)2x+3(2x-1)=16-(x+1)
相关试题