【题目】某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.
(1)求每吨水的基础价和调节价
(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;
(3)若某月用水12吨,应交水费多少元?
参考答案:
【答案】
(1)
解:设每吨水的基础价为x元,调节价为y元,
根据题意得:
,
解得:
,
则每吨水的基础价和调节价分别为1元和1.3元;
(2)
解:当0<n≤10时,m=n;当n>10时,m=10+1.3×(n﹣10)=1.3n﹣3
(3)
解:
根据题意得:1.3×12﹣3=12.6(元),
则应交水费为12.6元.
【解析】(1)设每吨水的基础价为x元,调节价为y元,根据两个月的用水量以及水费列出方程组,求出方程组的解即可得到结果;
(2)分两种情况考虑:当0<n≤10时;当n>10时,分别表示出m和n的函数解析式即可;
(3)判断12吨大于10吨,代入当n>10时解析式即可得到结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成就如下表:(单位:分)
项目
人员教学能力
科研能力
组织能力
甲
86
93
73
乙
81
95
79

(1)根据实际需要,将阅读能力、科研能力、组织能力三项测试得分按5:3:2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.

(1)求证:AB=AC
(2)若PC=2
,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.

(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法)
(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为
;
(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】实数tan45°,
,0,﹣
π,
,﹣
,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是( )
A.4
B.2
C.1
D.3 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是( )
①m是无理数; ②m是方程m2﹣12=0的解; ③m满足不等式组
; ④m是12的算术平方根
A.①②
B.①③
C.③
D.①②④
相关试题