【题目】如图,在平面直角坐标系中,已知A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1.
(2)直接写出点A1,B1,C1的坐标.
A1 , B1 , C1 ;
(3)请你求出△A1B1C1的面积.
![]()
参考答案:
【答案】(1)△A1B1C1如图所示见解析;(2)A1(﹣1,2)B1(﹣3,1)C1(2,﹣1);
(3)4.5.
【解析】
(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据平面直角坐标系写出各点的坐标即可;
(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
(1)△A1B1C1如图所示;
![]()
(2)A1(﹣1,2)B1(﹣3,1)C1(2,﹣1);
(3)△A1B1C1的面积=5×3﹣
×1×2﹣
×2×5﹣
×3×3,
=15﹣1﹣5﹣4.5,
=15﹣10.5,
=4.5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,∠ABC的平分线交AD于点E,∠BED的平分线交DC于点F,若AB=6,点F恰为DC的中点,则BC=(结果保留根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形,如图所示.
(1)数一下每一个多面体具有的顶点数
、棱数
和面数
.并且把结果记入表中.多面体
顶点数

面数

棱数

正四面体
4
4
6
正方体
正八面体
正十二面体
正二十面体
12
20
30
(2)观察表中数据,猜想多面体的顶点数
、棱数
和面数
之间的关系.(3)伟大的数学家欧拉(Euler,1707-1783)证明了这一令人惊叹的关系式,即欧拉公式.若已知一个多面体的顶点数
=196,棱数
=294.请你用欧拉公式求这个多面体的面数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】以直线AB上一点O为端点作射线OC,将一块直角三角板的直角顶点放在O处(注:∠DOE=90°).

(1)如图①,若直角三角板DOE的一边OD放在射线OB上,且∠BOC=60°,求∠COE的度数;
(2)如图②,将三板DOE绕O逆时针转动到某个位置时,若恰好满足5∠COD=∠AOE,且∠BOC=60°,求∠BOD的度数;
(3)如图③,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2﹣bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是;若a+b的值为非零整数,则b的值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC.
(1)求∠APO+∠DCO的度数;
(2)求证:点P在OC的垂直平分线上.

相关试题