【题目】如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=50°,∠BDC=75°.求∠BED的度数.
![]()
参考答案:
【答案】130°
【解析】
由DE∥BC,根据平行线的性质可得出“∠C=∠ADE,∠AED=∠ABC,∠EDB=∠CBD”,根据角平行线的性质可设∠CBD=α,则∠AED=2α,通过角的计算得出α=25°,再依据互补角的性质可得出结论.
∵DE∥BC,
∴∠C=∠ADE,∠AED=∠ABC,∠EDB=∠CBD,
又∵BD平分∠ABC,
∴∠CBD=∠ABD=∠EDB,
设∠CBD=α,则∠AED=2α.
∵∠A+∠AED+∠ADE=180°,∠ADE+∠EDB+∠BDC=180°,
∴∠A+∠AED=∠EDB+∠BDC,即50°+2α=α+75°,
解得:α=25°.
又∵∠BED+∠AED=180°,
∴∠BED=180°-∠AED=180°-25°×2=130°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=4,∠BAC=120°,M是BC的中点,点E是AB边上的动点,点F是线段BM上的动点,则ME+EF的最小值等于___.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果关于x的方程x2-ax+a2-3=0至少有一个正根,则实数a的取值范围是( )
A. -2<a<2 B.
<a≤2 C.
<a≤2 D.
≤a≤2 -
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分别为△ABC三边的长.
(1)如果方程有两个相等的实数根,试判断△ABC的形状并说明理由;
(2)已知a:b:c=3:4:5,求该一元二次方程的根.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的方程
(1)若这个方程有实数根,求实数k的取值范围;
(2)若方程两实数根分别为x1、x2,且满足
,求实数k的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是( )

A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠B=∠D=90°,AE,CF分别平分∠BAD及∠DCB,则AE∥FC吗?为什么?

相关试题