【题目】在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为 .
参考答案:
【答案】(4,﹣2)
【解析】解:∵以原点O为位似中心,B(3,0)的对应点B′的坐标为(6,0), ∴相似比为2,
∵A(2,﹣1),
∴点A′的对应点坐标为:(4,﹣2),
所以答案是:(4,﹣2).
【考点精析】根据题目的已知条件,利用位似变换的相关知识可以得到问题的答案,需要掌握它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点—位似中心).
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明用尺规作图作△ABC边AC上的高BH,作法如下:
①分别以点D,E为圆心,大于
DE的长为半径作弧,两弧交于F;
②作射线BF,交边AC于点H;
③以B为圆心,BK长为半径作弧,交直线AC于点D和E;
④取一点K,使K和B在AC的两侧;
所以,BH就是所求作的高.其中顺序正确的作图步骤是( )
A.①②③④
B.④③②①
C.②④③①
D.④③①② -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2+bx+c与x轴相交于A、B两点,点B的坐标为(3,0),与y轴相交于点C(0,﹣3),顶点为D.
(1)求出抛物线y=x2+bx+c的表达式;
(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①当m为何值时,四边形PEDF为平行四边形.
②设四边形OBFC的面积为S,求S的最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为( )

A.m+n
B.2m+n
C.m+2n
D.2m -n -
科目: 来源: 题型:
查看答案和解析>>【题目】将△ABC的各个顶点的横坐标分别加3,纵坐标不变,连接三个新的点所成的三角形是由△ABC()
A.向左平移3个单位所得 B.向右平移3个单位所得
C.向上平移3个单位所得 D.向下平移3个单位所得
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国最新研制的巨型计算机“曙光3000超级服务器”,它的运算峰值可以达到每秒403200000000次,403200000000用科学记数法来表示为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图
,二次函数
的图象与一次函数
的图象交于
,
两点,点
的坐标为
,点
在第一象限内,点
是二次函数图象的顶点,点
是一次函数
的图象与
轴的交点,过点
作
轴的垂线,垂足为
,且
. (
)求直线
和直线
的解析式.(2)点
是线段
上一点,点
是线段
上一点,
轴,射线
与抛物线交于点
,过点
作
轴于点
,
于点
,当
与
的乘积最大时,在线段
上找一点
(不与点
,点
重合),使
的值最小,求点
的坐标和
的最小值.(
)如图
,直线
上有一点
,将二次函数
沿直线
平移,平移的距离是
,平移后抛物线使点
,点
的对应点分别为点
,点
;当
是直角三角形时,求t的值.

相关试题