【题目】如图,将两块直角三角尺的顶点叠放在一起.
(1)若∠DCE=25°,求∠ACB的度数.
(2)若∠ACB=140°,求∠DCE的度数.
(3)猜想∠ACB与∠DCE的关系,并说明理由.
![]()
参考答案:
【答案】(1)155°;(2)40°;(3)∠ACB与∠DCE互补.理由见解析.
【解析】
(1)由于是两直角三角形板重叠,重叠的部分就比90°+90°减少的部分,所以若∠DCE=25°,则∠ACB的度数为180°-25°=155°;
(2)与(1)同理,由∠ACB=140°,则∠DCE的度数为180°-∠ACB=40°;
(3)由于∠ACD=∠ECB=90°,重叠的度数就是∠ECD的度数,所以∠ACB+∠DCE=180°.
(1)∵∠ACD=∠ECB=90°,∠DCE=25°,
∴∠ACB=∠ACD+∠DCB
=∠ACD+∠ECB﹣∠DCE
=180°﹣25°
=155°;
(2)由(1)知∠ACB=180°﹣∠ECD,
∴∠ECD=180°﹣∠ACB=40°;
(3)∠ACB+∠DCE=180°,
理由:∵∠ACB=∠ACD+∠DCB=90°+90°﹣∠DCE.
∴∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,山顶建有一座铁塔,塔高
米,测量人员在一个小山坡的P处测得塔的底部B点的仰角为
,塔顶C点的仰角为
已测得小山坡的坡角为
,坡长
米
求山的高度
精确到1米
参考数据:

-
科目: 来源: 题型:
查看答案和解析>>【题目】两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )
A. 2cm B. 4cm C. 2cm或22cm D. 4cm或44cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】某游泳馆普通票价20元
张,暑假为了促销,新推出两种优惠卡:
金卡售价600元
张,每次凭卡不再收费.
银卡售价150元
张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数
设游泳x次时,所需总费用为y元
分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
请根据函数图象,直接写出选择哪种消费方式更合算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】
问题发现如图
和
均为等边三角形,点
在同一直线上,连接BE.填空:
的度数为______;
线段
之间的数量关系为______.
拓展探究如图
和
均为等腰直角三角形,
,点
在同一直线上,CM为
中DE边上的高,连接BE,请判断
的度数及线段
之间的数量关系,并说明理由.
解决问题如图3,在正方形ABCD中,
,若点P满足
,且
,请直接写出点A到BP的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点
、
、
抛物线
过A、C两点.
直接写出点A的坐标,并求出抛物线的解析式;
动点P从点A出发
沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动
速度均为每秒1个单位长度,运动时间为t秒
过点P作
交AC于点E.
过点E作
于点F,交抛物线于点
当t为何值时,线段EG最长?
连接
在点P、Q运动的过程中,判断有几个时刻使得
是等腰三角形?请直接写出相应的t值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常繁琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.
解:设S=1+2+3+…+100 ①
则S=100+99+98+…+1 ②
①+②,得(即左右两边分别相加):
2S=(1+100)+(2+99)+(3+98)+…+(100+1),
=
,=100×101,
所以,S=
③,所以,1+2+3+…+100=5050.
后来人们将小高斯的这种解答方法概括为“倒序相加法”.请你利用“倒序相加法”解答下面的问题.
(1)计算:1+2+3+…+101;
(2)请你观察上面解答过程中的③式及你运算过程中出现的类似③式,猜想:1+2+3+…+n= ;
(3)至少用两种方法计算:1001+1002+…+2000.
方法1:
方法2:
相关试题