【题目】如图,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面积为45,△ADC的面积为20,则△ABD的面积为( ).
![]()
A.20B.18C.16D.25
参考答案:
【答案】D
【解析】
延长AD交BC于E,由AAS证明△ABD≌△EBD,得出AD=ED,得出△ABD的面积=△EBD的面积,△CDE的面积=△ACD的面积=20,即可得出结果.
延长AD交BC于E,如图所示:
∵BD平分∠ABC,AD垂直于BD,
∴∠ABD=∠EBD,∠ADB=∠EDB=90°,
在△ABD和△EBD中,
,
∴△ABD≌△EBD(AAS),
∴AD=ED,
∴△ABD的面积=△EBD的面积,△CDE的面积=△ACD的面积=20,
∴△ABD的面积=△EBD的面积=△BCD的面积-△CDE的面积=45-20=25.
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.
(1)计算由x、y确定的点(x,y)在函数y=﹣x+6图象上的概率;
(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是
的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.(1)求证:AE⊥DE;
(2)若∠BAF=60°,AF=4,求CE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为1,AB、AD上各有一点P、Q,△APQ的周长为2,求∠PCQ.
为了解决这个问题,我们在正方形外以BC和AB延长线为边作△CBE,使得△CBE≌△CDQ(如图)
(1)△CBE可以看成由△CDQ怎样运动变化得到的?
(2)图中PQ与PE的长度有什么关系?为什么?
(3)请用(2)的结论证明△PCQ≌△PCE;
(4)根据以上三个问题的启发,求∠PCQ的度数.
(5)对于题目中的点Q,若Q恰好是AD的中点,求BP的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c经过点A(-1,0),点B(3,0)和点C(0,3).

(1)求抛物线的解析式和顶点E的坐标;
(2)点C是否在以BE为直径的圆上?请说明理由;
(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R的坐标,若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知P(3,3),点B、A分别在x轴正半轴和y轴正半轴上,∠APB=90°,则OA+OB=________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为( )

A.
B.
C.
D. 
相关试题