【题目】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象可能是( )
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】C
【解析】解:二次函数的对称轴为:x=﹣
当a>0,b>0时,
一次函数的图象经过一、二、三象限,
二次函数的图象开口向上,对称轴x<0,
当a>0,b<0时,
一次函数的图象经过一、三、四象限,
二次函数的图象开口向上,对称轴x>0,
当a<0,b>0时,
一次函数的图象经过一、二、四象限,
二次函数的图象开口向下,对称轴x>0,
当a<0,b<0时,
一次函数的图象经过二、三、四象限,
二次函数的图象开口向下,对称轴x<0,
故选C
【考点精析】通过灵活运用一次函数的图象和性质和二次函数的图象,掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.

(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?
(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣
x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)试判断△AOC与△COB是否相似?并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则AB、CD之间的距离为( )
A.17
B.7
C.12
D.7或17 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )

A.(2,5)
B.(5,2)
C.(4,
)
D.(
,4) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;②b>a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的是

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣4,1)、B(﹣1,1)、C(﹣4,3).

(1)画出Rt△ABC关于原点O成中心对称的图形Rt△A1B1C1;
(2)若Rt△ABC与Rt△A2BC2关于点B中心对称,则点A2的坐标为、C2的坐标为
(3)求点A绕点B旋转180°到点A2时,点A在运动过程中经过的路程.
相关试题