【题目】下列各组数中,把两数相乘,积为1的是( )
A.2和-2
B.-2和 ![]()
C.
和 ![]()
D.
和- ![]()
参考答案:
【答案】C
【解析】解:A.2×(-2)=-4,故选项错误;
B.-2×12=-1,故选项错误;
C.
×
=1,故选项正确;
D.
×-
=-3,故选项错误;
所以答案是C。
【考点精析】通过灵活运用有理数的乘法法则和倒数,掌握有理数乘法法则:1、两数相乘,同号为正,异号为负,并把绝对值相乘2、任何数同零相乘都得零3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定;互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么
的倒数是
;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.

(1)直接写出AE与BC的位置关系;
(2)求证:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半径长. -
科目: 来源: 题型:
查看答案和解析>>【题目】我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:

(1)设装运A种脐橙的车辆数为
,装运B种脐橙的车辆数为
,求
与
之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).

(1)求抛物线的解析式;
(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】(本题12分)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3,
),B(9,5
),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OAABBC运动,在OA,AB,BC上运动的速度分别为3,
,
(单位长度/秒)﹒当P,Q中的一点到达C点时,两点同时停止运动.

(1)求AB所在直线的函数表达式.
(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值.
(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在矩形ABCD中,AB=10 cm,BC=8 cm.点P从点A出发,沿A→B→C→D的路线运动,到点D停止;点Q从点D出发,沿D→C→B→A的路线运动,到点A停止.若点P、点Q同时出发,点P的速度为每秒1 cm,点Q的速度为每秒2 cm,a秒时,点P、点Q同时改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm.图②是点P出发x秒后△APD的面积S1(cm2)与时间x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与时间x(秒)的函数关系图象.

(1)参照图②,求a、 b及图②中c的值;
(2)求d的值;
(3)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后,y1、y2与出发后的运动时间x(秒)的函数关系式,并求出点P、点Q相遇时x的值;
(4)当点Q出发__ __秒时,点Q的运动路程为25 cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
与
轴、
轴分别交于点
,
.点
的坐标为(
,0),点
的坐标为(
,0).(1)求
的值;(2)若点
(
,
)是第二象限内的直线上的一个动点.当点
运动过程中,试写出
的面积
与
的函数关系式,并写出自变量
的取值范围;(3)探究:当
运动到什么位置时,
的面积为
,并说明理由.
相关试题