【题目】已知函数f(x)=x2+bx+c,
(1)若函数f(x)是偶函数,求实数b的值
(2)若函数f(x)在区间[﹣1,3]上单调递增,求实数b的取值范围.
参考答案:
【答案】
(1)解:因为f(x)为偶函数,所以f(﹣x)=f(x),
∴(﹣x2)+b(﹣x)+c=x2+bx+c,∴b=0
(2)解:函数f(x)的对称轴为
,开口向上
所以f(x)的递增区间为
,
∴
,
∴
,
∴b≥2,
故实数b的取值范围为[2,+∞)
【解析】(1)根据偶函数的定义即可求出,(2)求出函数的对称轴,根据二次函数的性质即可求出.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知当
时,抛物线开口向上,函数在
上递减,在
上递增;当
时,抛物线开口向下,函数在
上递增,在
上递减.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线
的顶点为坐标原点O,焦点F在
轴正半轴上,准线
与圆
相切.(Ⅰ)求抛物线
的方程; (Ⅱ)已知直线
和抛物线
交于点
,命题
:“若直线
过定点(0,1),则
”,请判断命题
的真假,并证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
(
),焦点
到准线的距离为
,过点
作直线
交抛物线
于点
(点
在第一象限).(Ⅰ)若点
焦点
重合,且弦长
,求直线
的方程; (Ⅱ)若点
关于
轴的对称点为
,直线
交x轴于点
,且
,求证:点B的坐标是
,并求点
到直线
的距离
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列四个结论中:
(1)如果两个函数都是增函数,那么这两个函数的积运算所得函数为增函数;
(2)奇函数f(x)在[0,+∞)上是增函数,则f(x)在R上为增函数;
(3)既是奇函数又是偶函数的函数只有一个;
(4)若函数f(x)的最小值是a,最大值是b,则f(x)值域为[a,b].
其中正确结论的序号为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
.
(1)判断函数f(x)在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求函数f(x)在区间[2,4]上的最大值与最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
:
的一个焦点与抛物线
的焦点重合,点
在
上(Ⅰ)求
的方程; (Ⅱ)直线
不过原点O且不平行于坐标轴,
与
有两个交点
,线段
的中点为
,证明:
的斜率与直线
的斜率的乘积为定值. -
科目: 来源: 题型:
查看答案和解析>>【题目】销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=3
,Q=t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:
(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;
(2)怎样将资金分配给甲、乙两种商品,能使得总利润y达到最大值,最大值是多少?
相关试题