【题目】如图所示,正方体
的棱长为1,线段
上有两个动点
,则下列结论中正确结论的序号是__________.
![]()
①
;
②直线
与平面
所成角的正弦值为定值
;
③当
为定值,则三棱锥
的体积为定值;
④异面直线
所成的角的余弦值为定值
.
参考答案:
【答案】①③
【解析】连接
,交
于点
.很明显
平面
,
而
平面
,①正确;
由AC⊥平面BB1D1D,得OE是AE在平面BB1D1D上的射影,所以∠AEO是直线AE与平面DBB1D1所成角,由于AE不是定值,所以②不正确;
由于点B到直线B1D1的距离不变,故△BEF的面积为定值,又点A到平面BEF的距离为
,故三棱锥E-ABF的体积为定值,故③正确;
当E在D1,F在B1,此时异面直线AE,BF所成的角为
,故④不正确;
应填:①③.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于数集
,其中
,
,定义向量集
.若对于任意
,使得
,则称
具有性质
.例如
具有性质
.(
)若
,且
具有性质
,求
的值.(
)若
具有性质
,求证:
,且当
时,
.(
)若
具有性质
,且
,
(
为常数),求有穷数列
,
,
,
的通项公式. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)求函数
的单调区间;(2)当
时,函数
的图象恒不在
轴的上方,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数

(Ⅰ)当
(
为自然对数的底数)时,求
的极小值;(Ⅱ)若函数
存在唯一零点,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是
,每次竞赛成绩达全区前20名与否互相独立.(1)求该学生进入省队的概率.
(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为
,求
的分布列及
的数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市拟兴建九座高架桥,新闻媒体对此进行了问卷调查,在所有参与调查的市民中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

(1)在所有参与调查的人中,用分层抽样的方法抽取部分市民做进一步调研(不同态度的群体中亦按年龄分层抽样),已知从“保留”态度的人中抽取了19人,则在“支持”态度的群体中,年龄在40岁以下(含40岁)的人有多少被抽取;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取6人做进一步的调研,将此6人看作一个总体,在这6人中任意选取2人,求至少有1人在40岁以上的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱锥
中,
是正三角形,面
面
,
,
,
和
的重心分别为
,
.
(1)证明:
面
;(2)求
与面
所成角的正弦值.
相关试题