【题目】已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),且对任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),则实数a的取值范围是( )
A.[3,+∞)
B.(0,3]
C.[
,3]
D.(0,
]
参考答案:
【答案】D
【解析】解:∵函数f(x)=x2﹣2x的图象是开口向上的抛物线,且关于直线x=1对称
∴x1∈[﹣1,2]时,f(x)的最小值为f(1)=﹣1,最大值为f(﹣1)=3,
可得f(x1)值域为[﹣1,3]
又∵g(x)=ax+2(a>0),x2∈[﹣1,2],
∴g(x)为单调增函数,g(x2)值域为[g(﹣1),g(2)]
即g(x2)∈[2﹣a,2a+2]
∵对任意的x1∈[﹣1,2]都存在x2∈[﹣1,2],使得g(x1)=f(x2)
∴
,
∴0<a≤
,
故选:D.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握当
时,抛物线开口向上,函数在
上递减,在
上递增;当
时,抛物线开口向下,函数在
上递增,在
上递减.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是甲、乙两名篮球运动员2012年赛季每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是2008年北京奥运会上,七位评委为某奥运项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ;方差为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)(x∈R)为奇函数,f(1)=
,f(x+2)=f(x)+f(2),则f(5)=( )
A.0
B.1
C.
D.5 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知长方形
中,
,
为
的中点。将
沿
折起,使得平面
平面
。(1)求证:
; (2)若点
是线段
上的一动点,问点E在何位置时,二面角
的余弦值为
。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
+x,x∈[3,5].
(1)判断函数f(x)的单调性,并利用单调性定义证明;
(2)求函数f(x)的最大值和最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】教育部,体育总局和共青团中央号召全国各级各类学校要广泛,深入地开展全国亿万大,中学生阳光体育运动,为此,某校学生会对高二年级2014年9月与10月这两个月内参加体育运动的情况进行统计,随机抽取了100名学生作为样本,得到这100名学生在该月参加体育运动总时间的小时数,根据此数据作出了如下的频数和频率的统计表和 频率分布直方图:
(I)求a,p的值,并补全频率分布直方图;
(Ⅱ)根据上述数据和直方图,试估计运动时间在[25,55]小时的学生体育运动的平均时间;

相关试题