【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为( ) ![]()
A.y=2sin(2x+
)
B.y=2sin(2x+
)
C.y=2sin(
﹣
)
D.y=2sin(2x﹣
)
参考答案:
【答案】A
【解析】解:由已知可得函数y=Asin(ωx+)的图象经过(﹣
,2)点和(﹣
,2)
则A=2,T=π即ω=2
则函数的解析式可化为y=2sin(2x+),将(﹣
,2)代入得
﹣
+=
+2kπ,k∈Z,
即φ=
+2kπ,k∈Z,
当k=0时,φ=
此时
故选A
根据已知中函数y=Asin(ωx+)在一个周期内的图象经过(﹣
,2)和(﹣
,2),我们易分析出函数的最大值、最小值、周期,然后可以求出A,ω,φ值后,即可得到函数y=Asin(ωx+)的解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在正方体ABCD﹣A1B1C1D1中,B1C和平面ABCD所成的角的度数为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正数数列{an}的前n项和为Sn , 点P(an , Sn)在函数f(x)=
x2+
x上,已知b1=1,3bn﹣2bn﹣1=0(n≥2,n∈N*),
(1)求数列{an}的通项公式;
(2)若cn=anbn , 求数列{cn}的前n项和Tn;
(3)是否存在整数m,M,使得m<Tn<M对任意正整数n恒成立,且M﹣m=9,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥P-ABCD中,AB//CD,且


(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】记Sn为等比数列
的前n项和,已知S2=2,S3=-6.(1)求
的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列。
-
科目: 来源: 题型:
查看答案和解析>>【题目】[选修4—5:不等式选讲]
已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序
1
2
3
4
5
6
7
8
零件尺寸
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
抽取次序
9
10
11
12
13
14
15
16
零件尺寸
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得
,
,
,
,其中
为抽取的第
个零件的尺寸,
.(1)求
的相关系数
,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若
,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在
之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在
之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本
的相关系数
,
.
相关试题