【题目】已知与曲线
相切的直线
,与
轴,
轴交于
两点,
为原点,
,
,(
).
(1)求证::
与
相切的条件是:
.
(2)求线段
中点的轨迹方程;
(3)求三角形
面积的最小值.
参考答案:
【答案】(1)见解析;(2)
;(3)
.
【解析】试题分析:(1)写出直线的截距式方程,化为一般式,化圆的一般式方程为标准式,求出圆心坐标和半径,由圆心到直线的距离等于半径得到曲线C与直线l相切的充要条件;
(2)设出线段AB的中点坐标,由中点坐标公式得到a,b与AB中点坐标的关系,代入(1)中的条件得线段AB中点的轨迹方程.(3)因为a与b都大于2,且三角形AOB为直线三角形,要求面积的最小值即要求ab的最小值,根据(1)中直线l与圆相切的条件(a-2)(b-2)=2解出ab,然后利用基本不等式即可求出ab最小时当且经当a与b相等,求出此时的a与b即可求出面积的最小值.
试题解析:
(1)圆的圆心为
,半径为1.可以看作是
的内切圆。
内切圆的半径
,
即
,
即
,
.
(2)线段AB中点
为![]()
∴
(
)
(3)
,
,
解得
,
,
,
最小面积
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
(
)与
轴交于
点,动圆
与直线
相切,并且与圆
相外切,(1)求动圆的圆心
的轨迹
的方程;(2)若过原点且倾斜角为
的直线与曲线
交于
两点,问是否存在以
为直径的圆经过点
?若存在,求出
的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的不等式为12x2﹣ax>a2 .
(1)当a=2时,求不等式的解集;
(2)当a∈R时,求不等式的解集. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知两条直线l1(3+m)x+4y=5﹣3m,l2 2x+(5+m)y=8.当m分别为何值时,l1与l2:
(1)相交?
(2)平行?
(3)垂直? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数
小于
表示空气质量优良,空气质量指数大于
表示空气重度污染. 
(1)若该人随机选择3月1日至3月14日中的某一天到达该市,到达后停留
天(到达当日算
天),求此人停留期间空气重度污染的天数为
天的概率;(2)若该人随机选择3月7日至3月12日中的
天到达该市,求这
天中空气质量恰有
天是重度污染的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第
年与年销量
(单位:万件)之间的关系如下表:
(1)在图中画出表中数据的散点图;

(2)根据散点图选择合适的回归模型拟合
与
的关系(不必说明理由);(3)建立
关于
的回归方程,预测第5年的销售量.附注:参考公式:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
(
),若椭圆
上的一动点到右焦点的最短距离为
,且右焦点到直线
的距离等于短半轴的长,已知
,过
的直线与椭圆交于
两点.(1)求椭圆
的方程;(2)求
的取值范围.
相关试题