【题目】已知圆C:x2+y2=4,直线l:x+y=2.以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系.
(1)将圆C和直线l的方程化为极坐标方程;
(2)P是l上的点,射线OP交圆C于点R,又点Q在OP上且满足|OQ|·|OP|=|OR|2,当点P在l上移动时,求点Q轨迹的极坐标方程.
参考答案:
【答案】见解析
【解析】(1)将x=ρcos θ,y=ρsin θ代入圆C和直线l的直角坐标方程,得其极坐标方程分别为
C:ρ=2,l:ρ(cos θ+sin θ)=2.
(2)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ|·|OP|=|OR|2,得ρρ1=ρ.
又ρ2=2,ρ1=
,
所以
=4,
故点Q轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在极坐标系中点C的极坐标为
.(1)求出以点C为圆心,半径为2的圆的极坐标方程(写出解题过程)并画出图形;
(2)在直角坐标系中,以圆C所在极坐标系的极点为原点,极轴为x轴的正半轴建立直角坐标系,点P是圆C上任意一点,Q(5,-
),M是线段PQ的中点,当点P在圆C上运动时,求点M的轨迹的普通方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l:
(t为参数)与曲线C相交于M,N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
.(Ⅰ)求曲线
在点
处的切线方程;(Ⅱ)若
对
恒成立,求实数
的取值范围;(Ⅲ)求整数
的值,使函数
在区间
上有零点. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
,
.(1)当
时,求
的极值;(2)令
,求函数
的单调减区间. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
(
)的离心率为
,短轴的一个端点为
.过椭圆左顶点
的直线
与椭圆的另一交点为
.(1)求椭圆的方程;
(2)若
与直线
交于点
,求
的值;(3)若
,求直线
的倾斜角. -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为
(t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;
(2)直线l与直线C2交于A,B两点,若|AB|≥2
,求实数a的取值范围.
相关试题