【题目】已知椭圆
过点
,且与
的交于
,
.
(1) 用
表示
,
的横坐标;
(2)设以
为焦点,过点
,
且开口向左的抛物线的顶点坐标为
,求实数
的取值范围.
参考答案:
【答案】(1)
(
即
).(2)
.
【解析】
(1) 根据点在曲线上,代入求出
的值。通过联立曲线方程,求出交点的横坐标。
(2)设出抛物线方程,代入点坐标,进而得到关于x的一元二次方程;根据方程根的分布特征,求出参数的取值范围。
(1) 由于椭圆
过点
,故
.
横坐标适合方程
![]()
解得
(
即
).
即
横坐标是
(
即
).
(2) 根据题意,可设抛物线方程为
.
,
.
把
和
(等同于
坐标
)代入式抛物线方程,得
.
令
.
则
内有根(并且是单调递增函数),
![]()
解得
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】曲线
是平面内到定点
的距离与到定直线
的距离之和为
的动点
的轨迹.则曲线
与
轴交点的坐标是________________;又已知点
(
为常数),那么
的最小值
________________. -
科目: 来源: 题型:
查看答案和解析>>【题目】在极坐标系中,曲线C1:ρsin2θ=4cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C2的参数方程为:
,(θ∈[﹣
,
]),曲线C:
(t为参数).
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)C与C1相交于A,B,与C2相切于点Q,求|AQ|﹣|BQ|的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式anxn+an﹣1xn﹣1+…+a1x+a0 , 当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后进行求值.运行如图所示的程序框图,能求得多项式( )的值.

A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,则P(5<X<6)=( )
A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和大小,残差平方和越小的模型拟合效果越好.其中说法正确的是( )
A. ①② B. ②③ C. ①③ D. ①②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数f(x)=x3+x,x∈R,当
时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是( )
A.(0,1)
B.(﹣∞,0)
C.
D.(﹣∞,1)
相关试题