【题目】《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(注:雷达图,又可称为戴布拉图、蜘蛛网图
,可用于对研究对象的多维分析)( )
A.甲的直观想象素养高于乙
B.甲的数学建模素养优于数据分析素养
C.乙的数学建模素养与数学运算素养一样
D.乙的六大素养整体水平低于甲
科目:高中数学 来源: 题型:
【题目】设函数f(x).
(1)若x=1是函数f(x)的一个极值点,求k的值及f(x)单调区间;
(2)设g(x)=(x+1)ln(x+1)+f(x),若g(x)在[0,+∞)上是单调增函数,求实数k的取值范围;
(3)证明:当p>0,q>0及m<n(m,n∈N*)时,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一饮料店制作了一款新饮料,为了进行合理定价先进行试销售,其单价(元)与销量
(杯)的相关数据如下表:
单价 | 8.5 | 9 | 9.5 | 10 | 10.5 |
销量 | 120 | 110 | 90 | 70 | 60 |
(1)已知销量与单价
具有线性相关关系,求
关于
的线性回归方程;
(2)若该款新饮料每杯的成本为8元,试销售结束后,请利用(1)所求的线性回归方程确定单价定为多少元时,销售的利润最大?(结果四舍五入保留到整数)
附:线性回归方程中斜率和截距最小二乗法估计计算公式:
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,AD⊥PD,点F为棱PD的中点.
(1)在棱BC上是否存在一点E,使得CF∥平面PAE,并说明理由;
(2)若AC⊥PB,二面角D﹣FC﹣B的余弦值为时,求直线AF与平面BCF所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(注:雷达图,又可称为戴布拉图、蜘蛛网图
,可用于对研究对象的多维分析)( )
A.甲的直观想象素养高于乙
B.甲的数学建模素养优于数据分析素养
C.乙的数学建模素养与数学运算素养一样
D.乙的六大素养整体水平低于甲
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:
)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
“梅实初黄暮雨深”.请用样本平均数估计
镇明年梅雨季节的降雨量;
“江南梅雨无限愁”.
镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(
/亩)与降雨量的发生频数(年)如
列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?
(完善列联表,并说明理由).
亩产量\降雨量 | 合计 | ||
<600 | 2 | ||
1 | |||
合计 | 10 |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.703 |
(参考公式:,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,组合体由半个圆锥和一个三棱锥
构成,其中
是圆锥
底面圆心,
是圆弧
上一点,满足
是锐角,
.
(1)在平面内过点
作
平面
交
于点
,并写出作图步骤,但不要求证明;
(2)在(1)中,若是
中点,且
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com