【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
![]()
![]()
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的
列联表,若按
的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为
.若每次抽取的结果是相互独立的,求
分布列,期望
和方差
.
附: ![]()
![]()
参考答案:
【答案】(1)没有理由(2)见解析
【解析】试题分析:(1)利用频率分布直方图,可得各组概率,进一步可填出列联表,利用公式求出
的值,结合所给数据,用独立性检验可得结果;(2)利用分层抽样,可确定
人中有
男
女,利用古典概型,可得结果.
试题解析:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而
列联表如下:
非体育迷 | 体育迷 | 合计 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合计 | 75 | 25 | 100 |
将
列联表中的数据代入公式计算,得
.
因为
,所以没有理由认为“体育迷”与性别有关.
(2)由分层抽样可知
人中男生占
,女生占
,选
人没有一名女生的概率为
,故所求被抽取2名观众中至少有一名女生的概率为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】假设小明订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到,小明离家的时间在早上7:00—8:00之间,则他在离开家之前能拿到报纸的概率( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列是有关三角形ABC的几个命题,
①若tanA+tanB+tanC>0,则△ABC是锐角三角形;
②若sin2A=sin2B,则△ABC是等腰三角形;
③若(
+
)
=0,则△ABC是等腰三角形;
④若cosA=sinB,则△ABC是直角三角形;
其中正确命题的个数是( )
A..1
B..2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】关于下列命题:
①函数y=tanx的一个对称中心是(
,0);
②函数y=cos2(
﹣x)是偶函数;
③函数y=4sin(2x﹣
)的一条对称轴是x=﹣
;
④函数y=sin(x+
)在闭区间[﹣
,
]上是增函数.
写出所有正确的命题的题号 . -
科目: 来源: 题型:
查看答案和解析>>【题目】
设函数f(x)=alnx﹣bx2(x>0).
(1)若函数f(x)在x=1处于直线
相切,求函数f(x)在
上的最大值;(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[1,
],x∈[1,e2]都成立,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且
asinA=(
b﹣c)sinB+(
c﹣b)sinC.
(1)求角A的大小;
(2)若a=
,cosB=
,D为AC的中点,求BD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1 , BC的中点.

(1)求证:AB⊥C1F;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E﹣ABC的体积.
相关试题