【题目】关于下列命题:
①函数y=tanx的一个对称中心是(
,0);
②函数y=cos2(
﹣x)是偶函数;
③函数y=4sin(2x﹣
)的一条对称轴是x=﹣
;
④函数y=sin(x+
)在闭区间[﹣
,
]上是增函数.
写出所有正确的命题的题号 .
参考答案:
【答案】①③
【解析】解:对于函数y=tanx,当x=
时,y无意义,故y=tanx的图象的一个对称中心是(
,0),故①正确.
∵函数y=cos2(
﹣x)=cos(
﹣2x)=sin2x,故它是奇函数,故②错误;
令2x﹣
=kπ+
,k∈Z,求得x=
+
,可得函数y=4sin(2x﹣
)的一条对称轴是x=﹣
,故③正确;
在区间[﹣
,
]上,x+
∈[﹣
,
],函数y=sin(x+
)在闭区间[﹣
,
]上没有单调性,故④错误,
所以答案是:①③.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2 , a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anlog
an , 求数列{bn}的前n项和Sn . -
科目: 来源: 题型:
查看答案和解析>>【题目】假设小明订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到,小明离家的时间在早上7:00—8:00之间,则他在离开家之前能拿到报纸的概率( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列是有关三角形ABC的几个命题,
①若tanA+tanB+tanC>0,则△ABC是锐角三角形;
②若sin2A=sin2B,则△ABC是等腰三角形;
③若(
+
)
=0,则△ABC是等腰三角形;
④若cosA=sinB,则△ABC是直角三角形;
其中正确命题的个数是( )
A..1
B..2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:


将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的
列联表,若按
的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为
.若每次抽取的结果是相互独立的,求
分布列,期望
和方差
.附:


-
科目: 来源: 题型:
查看答案和解析>>【题目】
设函数f(x)=alnx﹣bx2(x>0).
(1)若函数f(x)在x=1处于直线
相切,求函数f(x)在
上的最大值;(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[1,
],x∈[1,e2]都成立,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且
asinA=(
b﹣c)sinB+(
c﹣b)sinC.
(1)求角A的大小;
(2)若a=
,cosB=
,D为AC的中点,求BD的长.
相关试题