【题目】已知两条不重合的直线
和两个不重合的平面
,若
,则下列四个命题:①若
,则
;②若
,则
; ③若
,则
;④若
,则
,其中正确命题的个数是( )
A. 0 B. 1 C. 2 D. 3
参考答案:
【答案】C
【解析】对于①,若
,则
,因为
,所以
,所以①正确;对于②,若
时,
,不能推出
,所以不能得出
,②错误;对于③,若
,则
,而
,由面面垂直的判定定理有
,所以③正确;对于④,若
,又
,
,则
的关系不能确定,可能平行,可能相交,可能异面,④错误.正确的有①③,故正确命题的个数为2.选C.
点睛:本题主要考查了立体几何中的线面位置关系,属于易错题.在①中考查了线面垂直的性质定理,线面垂直,则线线垂直;在②中,反例:见下图,直三棱柱
中,
平面
,
面
,但平面
平面
,故②是错误的; ③是考查面面垂直的判定定理;在④中, 直线
的位置关系不能确定,可能平行,可能相交,可能异面.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中
①函数f(x)=(
)x的递减区间是(﹣∞,+∞);
②若函数f(x)=
,则函数定义域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正确命题的序号为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x2+1.
(1)判断函数f(x)的奇偶性;
(2)用定义法证明函数f(x)在区间(0,+∞)上是增函数. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
. (Ⅰ)若
,证明:函数
是
上的减函数;(Ⅱ)若曲线
在点
处的切线与直线
平行,求
的值;(Ⅲ)若
,证明:
(其中
…是自然对数的底数). -
科目: 来源: 题型:
查看答案和解析>>【题目】河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家里躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》.自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求:“幼儿园、中小学等教育机构停课,停课不停学”,学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的.某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:
年龄(岁)






频数
5
10
15
10
5
5
赞成人数
4
6
9
6
3
4
(1)请补全被调查人员年龄的频率分布直方图;

(2)若从年龄在
的被调查者中分别随机选取一人进行追踪调查,求这两人都赞成“停课”这一举措的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4, 则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号
A1
A2
A3
A4
A5
质量指标
(x, y, z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
产品编号
A6
A7
A8
A9
A10
质量指标
(x, y, z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样本的一等品中, 随机抽取2件产品,
(ⅰ) 用产品编号列出所有可能的结果;
(ⅱ) 设事件B为“在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的多面体中,
是平行四边形,
是矩形,
面
,
,
.(Ⅰ)求证:平面
平面
;(Ⅱ)若
,求
与平面
所成角的正弦值.
相关试题