【题目】已知椭圆C:
+
=1(a>b>0)的右焦点为F(1,0),且点P(1,
)在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围;
(3)过椭圆C1:
+
=1上异于其顶点的任一点P,作圆O:x2+y2=
的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴、y轴上的截距分别为m、n,证明:
+
为定值.
参考答案:
【答案】
(1)解:由题意得:c=1,
∴a2=b2+1,
又因为点P(1,
)在椭圆C上,
∴
+
=1,
解得:a2=4,b2=3,
则椭圆标准方程为
+
=1
(2)解:设直线l方程为y=kx+2,A(x1,y1)、B(x2,y2),
联立
,消去y得:(4k2+3)x2+16kx+4=0,
∵△=12k2﹣3>0,∴k2>
,
∴x1+x2=﹣
,x1x2=
,
∵∠AOB为锐角,∴
>0,即x1x2+y1y2>0,
∴x1x2+(kx1+2)(kx2+2)>0,即(1+k2)x1x2+2k(x1+x2)+4>0,
整理得:(1+k2)
+2k
+4>0,即
>0,
整理得:k2<
,即
<k2<
,
解得:﹣
<k<﹣
或
<k< ![]()
(3)解:由题意:C1:
+
=1,
设点P(x1,y1),M(x2,y2),N(x3,y3),
∵M,N不在坐标轴上,∴kPM=﹣
=﹣
,
∴直线PM的方程为y﹣y2=﹣
(x﹣x2),
化简得:x2x+y2y=
④,
同理可得直线PN的方程为x3x+y3y=
⑤,
把P点的坐标代入④、⑤得
,
∴直线MN的方程为x1x+y1y=
,
令y=0,得m=
,令x=0得n=
,
∴x1=
,y1=
,
又点P在椭圆C1上,
∴(
)2+3(
)2=4,
则
+
=
为定值
【解析】(1)由焦点坐标确定出c的值,根据椭圆的性质列出a与b的方程,再将P点坐标代入椭圆方程列出关于a与b的方程,联立求出a与b的值,确定出椭圆方程即可;(2)设直线l方程为y=kx+2,A(x1 , y1)、B(x2 , y2),联立l与椭圆方程,消去y得到关于x的一元二次方程,利用韦达定理表示出x1+x2与x1x2 , 根据∠AOB为锐角,得到
>0,即x1x2+y1y2>0,即可确定出k的范围;(3)由题意:确定出C1的方程,设点P(x1 , y1),M(x2 , y2),N(x3 , y3),根据M,N不在坐标轴上,得到直线PM与直线OM斜率乘积为﹣1,确定出直线PM的方程,同理可得直线PN的方程,进而确定出直线MN方程,求出直线MN与x轴,y轴截距m与n,即可确定出所求式子的值为定值.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:
,焦点在y轴:
才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨,生产每吨乙产品要用A原料1吨,B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是___________万元
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1 .

(1)求证:A1B⊥AD;
(2)若AD=AB=2BC,∠A1AB=60°,点D在平面ABB1A1上的射影恰为线段A1B的中点,求平面DCC1D1与平面ABB1A1所成锐二面角的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了 1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.
(1)请根据2、3、4、5月的数据,求出
关于
的线性回归方程
;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:
,
)参考数据:
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)=ex+sinx,g(x)=ax,F(x)=f(x)﹣g(x).
(1)若x=0是F(x)的极值点,求a的值;
(2)当 a=1时,设P(x1 , f(x1)),Q(x2 , g(x2))(x1>0,x2>0),且PQ∥x轴,求P、Q两点间的最短距离;
(3)若x≥0时,函数y=F(x)的图象恒在y=F(﹣x)的图象上方,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.
(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图三棱柱
中,侧面
为菱形,
.
(1)证明:
;(2)若
,
,求二面角
的余弦值.
相关试题