【题目】已知向量
,
,
.
(
)求函数
的单增区间.
(
)若
,求
值.
(
)在
中,角
,
,
的对边分别是
,
,
.且满足
,求函数
的取值范围.
参考答案:
【答案】(
)
;(
)
;(
)
.
【解析】试题分析:(1)利用平面向量的数量积得到f(x)的解析式,求解单调区间即可;
(2)由(1)的解析式,利用f(x)=1,结合倍角公式求
的值即可;
(3)结合正弦定理结合内角和公式,得到f(A)的解析式,结合三角函数的有界性求值域即可.
试题解析:(
)![]()
,
∴
.
由
,
得:
,
.
的递增区间是
.
(
)
.
.
∵
,
∴
,
∴
.
(
)∵
.
由正弦定理得
.
∴
.
∴
.
∵
.
∴
.
∴
.
∵
.
∴
.
∴
.
∴
,
.
又∵
.
∴
.
故函数
的取值范围是
.
点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如
,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.
(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需示量
(单位:千万立方米)与年份
(单位:年)之间的关系.并且已知
关于
的线性回归方程是
,试确定
的值,并预测2018年该地区的天然气需求量;
(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A类:每车补贴1万元,B类:每车补贴2.5万元,C类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:
类型
类
类
类车辆数目
10
20
30
为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“
”,求
的分布列及期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】椭圆
(
)的左、右焦点分别为
,
,过
作垂直于
轴的直线
与椭圆
在第一象限交于点
,若
,且
.(Ⅰ)求椭圆
的方程;(Ⅱ)
,
是椭圆
上位于直线
两侧的两点.若直线
过点
,且
,求直线
的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
.(Ⅰ)若曲线
与曲线
在公共点处有共同的切线,求实数
的值;(Ⅱ)在(Ⅰ)的条件下,试问函数
是否有零点?如果有,求出该零点;若没有,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式;(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量

14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,
表示当天的利润(单位:元),求
的分布列及数学期望;(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,
是平行四边形,
,
,
,
,
,
分别是
,
的中点.(Ⅰ)证明:平面
平面
; (Ⅱ)求二面角
的余弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的离心率为
,
、
分别为椭圆
的左、右顶点,点
满足
.(Ⅰ)求椭圆
的方程;(Ⅱ)设直线
经过点
且与
交于不同的两点
、
,试问:在
轴上是否存在点
,使得直线
与直线
的斜率的和为定值?若存在,请求出点
的坐标及定值;若不存在,请说明理由.
相关试题