【题目】已知a∈R,函数f(x)=|x+ ﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是


参考答案:

【答案】(﹣∞,
【解析】解:由题可知|x+ ﹣a|+a≤5,即|x+ ﹣a|≤5﹣a,所以a≤5,
又因为|x+ ﹣a|≤5﹣a,
所以a﹣5≤x+ ﹣a≤5﹣a,
所以2a﹣5≤x+ ≤5,
又因为1≤x≤4,4≤x+ ≤5,
所以2a﹣5≤4,解得a≤
所以答案是:(﹣∞, ).
【考点精析】本题主要考查了函数的最值及其几何意义和绝对值不等式的解法的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.

关闭