【题目】设f(x)=x2+bx+c且f(0)=f(2),则( )
A.f(﹣2)<f(0)<f(
)
B.f(
)<f(0)<f(﹣2)??
C.f(
)<f(﹣2)<f(0)
D.f(0)<f(
)<f(﹣2)
参考答案:
【答案】B
【解析】解:∵f(0)=f(2),
∴f(x)的对称轴为x=1,∴f(
)=f(
).
∵f(x)的图象开口向上,
∴f(x)在(﹣∞,1)上单调递减,
∵﹣2<0<
,
∴f(﹣2)>f(0)>f(
)=f(
),
故选B.
【考点精析】根据题目的已知条件,利用二次函数的性质的相关知识可以得到问题的答案,需要掌握当
时,抛物线开口向上,函数在
上递减,在
上递增;当
时,抛物线开口向下,函数在
上递增,在
上递减.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=Asin(ωx+θ)( A>0,ω>0,|θ|<
)的最小正周期为π,且图象上有一个最低点为M(
,﹣3).
(1)求f(x)的解析式;
(2)求函数f(x)在[0,π]的单调递增区间. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)对一切x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a∈R,设P:当
时,不等式f(x)+3<2x+a恒成立,Q:当x∈[﹣2,2]时,g(x)=f(x)﹣ax是单调函数,如果记使P成立的实数a的取值的集合为A,使Q成立的实数a的取值的集合为B,求A∩RB. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆C的圆心在直线x﹣2y=0上.
(1)若圆C与y轴的正半轴相切,且该圆截x轴所得弦的长为2
,求圆C的标准方程;
(2)在(1)的条件下,直线l:y=﹣2x+b与圆C交于两点A,B,若以AB为直径的圆过坐标原点O,求实数b的值;
(3)已知点N(0,3),圆C的半径为3,且圆心C在第一象限,若圆C上存在点M,使MN=2MO(O为坐标原点),求圆心C的纵坐标的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知顶点在单位圆上的△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.
(1)求角A的大小;
(2)若b2+c2=4,求△ABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c=
asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为
,求b,c. -
科目: 来源: 题型:
查看答案和解析>>【题目】若直角坐标平面内的两点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”),
已知函数f(x)=
,则此函数的“友好点对”有( )
A.0对
B.1对
C.2对
D.3对
相关试题