【题目】已知椭圆C:
(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.
参考答案:
【答案】(1)
(2)1或-1.
【解析】试题分析:(I)由已知条件可得
和
的值,利用
可得
的值,进而可得椭圆的方程;(II)先设
、
的坐标,再联立直线
的方程和椭圆的方程,消去
,化简得关于
的一元二次方程,由韦达定理可得
,
的值,由弦长公式求|MN|,由点到直线的距离公式求△AMN的高,再根据三角形的面积求
.
试题解析:(1)由题意得
解得
.所以椭圆C的方程为
.
(2)由
得
.
设点M,N的坐标分别为
,
,则
,
,
,
.
所以|MN|=
=
=
.
由因为点A(2,0)到直线
的距离
,
所以△AMN的面积为
. 由
,解得
,经检验
,所以
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,底面
是边长为3的正方形,
平面
,
,
,
与平面
所成的角为
.
(1)求证:平面
平面
;(2)求二面角
的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,A,B两点为喷泉,圆心O为AB的中点,其中OA=OB=a米,半径OC=10米,市民可位于水池边缘任意一点C处观赏.

(1)若当∠OBC=
时,sin∠BCO=
,求此时a的值;
(2)设y=CA2+CB2 , 且CA2+CB2≤232.
(i)试将y表示为a的函数,并求出a的取值范围;
(ii)若同时要求市民在水池边缘任意一点C处观赏喷泉时,观赏角度∠ACB的最大值不小于
,试求A,B两处喷泉间距离的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C:
=1(a>b>0)的离心率为
,椭圆C 与y 轴交于A,B 两点,且|AB|=2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x 轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an},其前n项和为Sn .
(1)若{an}是公差为d(d>0)的等差数列,且{
}也为公差为d的等差数列,求数列{an}的通项公式;
(2)若数列{an}对任意m,n∈N* , 且m≠n,都有
=am+an+
,求证:数列{an}是等差数列. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
,直线y=
x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣
}(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修:4﹣2:矩阵与变换
若圆C:x2+y2=1在矩阵
(a>0,b>0)对应的变换下变成椭圆E:
,求矩阵A的逆矩阵A﹣1 .
相关试题