【题目】如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).
![]()
①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.
参考答案:
【答案】①②④
【解析】试题分析:将三角形ADE沿AE折起后几何体如图所示:
![]()
①因为M、N分别是AD、BE的中点,所以不论D折至何位置(不在平面ABC内)都有
,
所以①正确;
②
,所以②正确;
③
,
而
与
相交,所以
与
相交,所以③错;
④当
时,因为
平面
,所以存在某个位置,使
,所以④正确;故答案为①②④.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )

A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如果函数f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)满足
,
,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是( )
A.
B.(
)
C.(
,1)
D.(
,1) -
科目: 来源: 题型:
查看答案和解析>>【题目】设[x]表示不超过x的最大整数,如:[π]=3,[﹣4.3]=﹣5.给出下列命题: ①对任意实数x,都有[x]﹣x≤0;
②若x1≤x2 , 则[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函数f(x)=
﹣
,则y=[f(x)]+[f(﹣x)]的值域为{﹣1,0}.
其中所有真命题的序号是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:

(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知各项均不相等的等差数列{an}的前四项和S4=14,且a1 , a3 , a7成等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{
}的前n项和,若Tn≤λan+1对n∈N*恒成立,求实数λ的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.

(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB.
相关试题