【题目】已知函数满足
=1,则
等于( )
A.-B.
C.-
D.
科目:高中数学 来源: 题型:
【题目】已知某种细菌的适宜生长温度为12℃~27℃,为了研究该种细菌的繁殖数量(单位:个)随温度
(单位:℃)变化的规律,收集数据如下:
温度 | 14 | 16 | 18 | 20 | 22 | 24 | 26 |
繁殖数量 | 25 | 30 | 38 | 50 | 66 | 120 | 218 |
对数据进行初步处理后,得到了一些统计量的值,如表所示:
20 | 78 | 4.1 | 112 | 3.8 | 1590 | 20.5 |
其中,
.
(1)请绘出关于
的散点图,并根据散点图判断
与
哪一个更适合作为该种细菌的繁殖数量
关于温度
的回归方程类型(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表格数据,建立关于
的回归方程(结果精确到0.1);
(3)当温度为27℃时,该种细菌的繁殖数量的预报值为多少?
参考公式:对于一组数据,其回归直线
的斜率和截距的最小二成估计分别为
,
,参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与x轴负半轴交于
,离心率
.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于
两点,连接AM,AN并延长交直线x=4于
两点,若
,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角BCGA的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线平面
,垂足为
,三棱锥
的底面边长和侧棱长都为4,
在平面
内,
是直线
上的动点,则点
到平面
的距离为_______,点
到直线
的距离的最大值为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为
.己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.
(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;
(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛.决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜.Pi+4(i=4,
3,
2,…,4)表示甲总分为i时,最终甲获胜的概率.
①写出P0,P8的值;
②求决赛甲获胜的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在
处的切线的方程为
,求实数
的值;
(2)设,若对任意两个不等的正数
,都有
恒成立,求实数
的取值范围;
(3)若在上存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答,随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.
男 | 女 | 总计 | |
合格 | |||
不合格 | |||
总计 |
(1)由以上数据绘制成2×2联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?
(2)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,求这2个学生性别不同的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com