【题目】如图,棱形
的边长为6,
,
.将棱形
沿对角线
折起,得到三棱锥
,点
是棱
的中点,
.
![]()
(Ⅰ)求证:
∥平面
;
(Ⅱ)求三棱锥
的体积.
参考答案:
【答案】(1)详见解析;(2)
.
【解析】试题分析:(1)求证:
平面
,这是证明线面平行问题,证明线面平行,即证线线平行,可利用三角形的中位线,或平行四边形的对边平行,本题注意到
是
的中点,点
是棱
的中点,因此由三角形的中位线可得,
,从而可得
平面
;(2)求三棱锥
的体积,由已知
,由题意
,可得
,从而得
平面
,即
平面
,因此把求三棱锥
的体积,转化为求三棱锥
的体积,因为高
,求出
的面积即可求出三棱锥
的体积.
试题解析:(1)证明:因为点
是菱形
的对角线的交点,
所以
是
的中点.又点
是棱
的中点,
所以
是
的中位线,
. 2分
因为
平面
,
平面
, 4分
所以
平面
. 6分
(2)三棱锥
的体积等于三棱锥
的体积. 7分
由题意,
,
因为
,所以
,
. 8分
又因为菱形
,所以
. 9分
因为
,所以
平面
,即
平面
10分
所以
为三棱锥
的高. 11分
的面积为![]()
, 13分
所求体积等于![]()
. 14分
-
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
.(Ⅰ)求曲线
在点
处的切线方程;(Ⅱ)若
对
恒成立,求实数
的取值范围;(Ⅲ)求整数
的值,使函数
在区间
上有零点. -
科目: 来源: 题型:
查看答案和解析>>【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在
,
,
对应的小矩形的面积分别是
,且
.
(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在
的人数;(2)计算在五一活动中消费超过3000元的消费者的平均年龄;
(3)若按照分层抽样,从年龄在
,
的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在
内的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,底面
为平行四边形,
为侧棱
的中点.
(Ⅰ)求证:
∥平面
(Ⅱ)若
,
,求证:平面

平面
-
科目: 来源: 题型:
查看答案和解析>>【题目】设p:实数x满足
,其中
,命题
实数
满足|x-3|≤1 .
(1)若
且
为真,求实数
的取值范围;(2)若
是
的充分不必要条件,求实数a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】将圆的一组
等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录
(
)个点的颜色,称为该圆的一个“
阶色序”,当且仅当两个
阶色序对应位置上的颜色至少有一个不相同时,称为不同的
阶色序.若某国的任意两个“
阶色序”均不相同,则称该圆为“
阶魅力圆”.“3阶魅力圆”中最多可有的等分点个数为( )A.4 B.6 C.8 D.10
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
:
与双曲线
:
(
,
)有公共焦点
,点
是曲线
,
在在第一象限的交点,且
.
(1)求双曲线
的方程;(2)以
为圆心的圆
与双曲线的一条渐进线相切,圆
.已知点
,过点
作互相垂直分别与圆
、圆
相交的直线
和
,设
被圆
解得的弦长为
,
被圆
截得的弦长为
.试探索
是否为定值?请说明理由.
相关试题