【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取
名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
| 10 | 0.25 |
| 25 |
|
|
|
|
| 2 | 0.05 |
合计 |
| 1 |
![]()
(1)求出表中
及图中
的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间
内的概率.
参考答案:
【答案】(1)
(2)![]()
【解析】试题分析:
(1)由频率分布直方图的性质可得:
,
.
.
(2)由题意可得平均次数约为17次;
(3)将频率看作概率,列出所有事件可得至少1人参加社区服务次数在区间
内的概率为
.
试题解析:
解:(1)由题可知
,
,
,
.
又
,
解得
,
,
.
.
则
组的频率与组距之比
为
.
(2)参加社区服务的平均次数为:
次.
(3)在样本中,处于
内的人数为3,可分别记为
,
,
,
处于
内的人数为2,可分别记为
,
,
从该5名学生中取出2人的取法有:
,
,
,
,
,
,
,
,
,
共10种.
至少1人在
内的情况共有9种,
∴至少1人参加社区服务次数在区间
内的概率为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取
名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组
频数
频率

10
0.25

25





2
0.05
合计

1

(1)求出表中
及图中
的值;(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间
内的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.(8×8的格点图是由边长为1的小正方形组成)

(1)求1路车从A站到D站所走的路程(精确到0.1);
(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图.(要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复) -
科目: 来源: 题型:
查看答案和解析>>【题目】设直线
与圆
交于M、N两点,且M、N关于直线
对称.(1)求m,k的值;
(2)若直线
与圆C交P,Q两点,是否存在实数a使得OP⊥OQ,如果存在,求出a的值;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是圆
的直径,点
在圆
上,矩形
所在的平面垂直于圆
所在的平面,
.
(1)证明:平面
⊥平面
;
(2)当三棱锥
的体积最大时,求点
到平面
的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件)
n=50﹣x
销售单价m(元/件)
当1≤x≤20时,m=20+
x当21≤x≤30时,m=10+

(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
,其中
为参数,
,再以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,其中
,
,直线
与曲线
交于
两点.(1)求
的值;(2)已知点
,且
,求直线
的普通方程.
相关试题