【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为
,求a.
参考答案:
【答案】(1)
与
的交点坐标为
,
;(2)
或
.
【解析】试题分析:(1)直线与椭圆的参数方程化为直角坐标方程,联立解交点坐标;(2)利用椭圆参数方程,设点
,由点到直线距离公式求参数.
试题解析:(1)曲线
的普通方程为
.
当
时,直线
的普通方程为
.
由
解得
或
.
从而
与
的交点坐标为
,
.
(2)直线
的普通方程为
,故
上的点
到
的距离为
.
当
时,
的最大值为
.由题设得
,所以
;
当
时,
的最大值为
.由题设得
,所以
.
综上,
或
.
点睛:本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表示出椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序
1
2
3
4
5
6
7
8
零件尺寸
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
抽取次序
9
10
11
12
13
14
15
16
零件尺寸
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得
,
,
,
,其中
为抽取的第
个零件的尺寸,
.(1)求
的相关系数
,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若
,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在
之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在
之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本
的相关系数
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知a,b∈R,且ab≠0,则下列结论恒成立的是( )
A.a+b≥2
B.a2+b2>2ab
C.
+
≥2
D.|
+
|≥2 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三点在椭圆C上.(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】[选修4—5:不等式选讲]
已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把函数f(x)=sin(2x+φ)(|φ|<
)的图象上的所有点向左平移
个单位长度,得到函数y=g(x)的图象,且g(﹣x)=g(x),则( )
A.y=g(x)在(0,
)单调递增,其图象关于直线x=
对称
B.y=g(x)在(0,
)单调递增,其图象关于直线x=
对称
C.y=g(x)在(0,
)单调递减,其图象关于直线x=
对称
D.y=g(x)在(0,
)单调递减,其图象关于直线x=
对称 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
ae2x+(a﹣2) ex﹣x.(1)讨论
的单调性;(2)若
有两个零点,求a的取值范围.
相关试题