【题目】已知椭圆C:
(a>b>0)的离心率为
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+
=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=﹣
,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
参考答案:
【答案】(1)
(2)
【解析】试题分析:(1)由椭圆的离心率等于
,原点
到直线
的距离等于
及隐含条件
联立方程组求解
的值,则椭圆
的标准方程可求;(2)联立直线方程和椭圆方程,消去
后利用根与系数关系得到
两点的横坐标的和与积,由弦长公式求得
,由点到直线的距离公式求得
到
的距离,代入三角形的面积公式证得答案.
试题解析:(1)由题意得![]()
椭圆的方程为
.
(2)设
,
则A,B的坐标满足![]()
消去y化简得
,
,
得
, ![]()
=
,即![]()
即
![]()
=
![]()
O到直线
的距离![]()
=
=
=
为定值
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某小区准备将闲置的一直角三角形(其中∠B=
,AB=a,BC=
a)地块开发成公共绿地,设计时,要求绿地部分有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A′MN),现考虑方便和绿地最大化原则,要求M点与B点不重合,A′落在边BC上,设∠AMN=θ.
(1)若θ=
时,绿地“最美”,求最美绿地的面积;(2)为方便小区居民的行走,设计时要求将AN,A′N的值设计最短,求此时绿地公共走道的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知向量m=(cosx,-1),n=
,函数f(x)=(m+n)·m.(1)求函数f(x)的最小正周期;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=
,且f(A)恰是函数f(x)在
上的最大值,求A,b和△ABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市为了制定合理的节电方案,供电局对居民用电进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照
,
,
,
,
,
,
,
,
分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中
的值并估计居民月均用电量的中位数;(Ⅱ)现从第8组和第9组的居民中任选取2户居民进行访问,则两组中各有一户被选中的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列。
-
科目: 来源: 题型:
查看答案和解析>>【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
:
过椭圆
:
(
)的短轴端点,
,
分别是圆
与椭圆
上任意两点,且线段
长度的最大值为3.(Ⅰ)求椭圆
的方程;(Ⅱ)过点
作圆
的一条切线交椭圆
于
,
两点,求
的面积的最大值.
相关试题